Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(2x+4)=cos(46)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x+4)=cos(46∘)

Solution

x=9016200∘n+1980∘−180​,x=453060∘+8100∘n−90​
+1
Radians
x=18511π​​−2+9090π​n,x=−2+9517π​​+4545π​n
Solution steps
sin(2x+4)=cos(46∘)
Rewrite using trig identities
cos(46∘)
Use the following identity: cos(x)=sin(90∘−x)sin(90∘−46∘)
sin(2x+4)=sin(90∘−46∘)
Apply trig inverse properties
sin(2x+4)=sin(90∘−46∘)
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn2x+4=90∘−46∘+360∘n,2x+4=180∘−(90∘−46∘)+360∘n
2x+4=90∘−46∘+360∘n,2x+4=180∘−(90∘−46∘)+360∘n
2x+4=90∘−46∘+360∘n:x=9016200∘n+1980∘−180​
2x+4=90∘−46∘+360∘n
Move 4to the right side
2x+4=90∘−46∘+360∘n
Subtract 4 from both sides2x+4−4=90∘−46∘+360∘n−4
Simplify
2x+4−4=90∘−46∘+360∘n−4
Simplify 2x+4−4:2x
2x+4−4
Add similar elements: 4−4=0
=2x
Simplify 90∘−46∘+360∘n−4:360∘n+44∘−4
90∘−46∘+360∘n−4
Combine the fractions 90∘−46∘:44∘
90∘−46∘
Least Common Multiplier of 2,90:90
2,90
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 90:2⋅3⋅3⋅5
90
90divides by 290=45⋅2=2⋅45
45divides by 345=15⋅3=2⋅3⋅15
15divides by 315=5⋅3=2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 90=2⋅3⋅3⋅5
Multiply the numbers: 2⋅3⋅3⋅5=90=90
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 90
For 90∘:multiply the denominator and numerator by 4590∘=2⋅45180∘45​=90∘
=90∘−46∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=90180∘45−4140∘​
Add similar elements: 8100∘−4140∘=3960∘=44∘
Cancel the common factor: 2=44∘
=360∘n+44∘−4
2x=360∘n+44∘−4
2x=360∘n+44∘−4
2x=360∘n+44∘−4
Divide both sides by 2
2x=360∘n+44∘−4
Divide both sides by 222x​=2360∘n​+244∘​−24​
Simplify
22x​=2360∘n​+244∘​−24​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2360∘n​+244∘​−24​:9016200∘n+1980∘−180​
2360∘n​+244∘​−24​
Apply rule ca​±cb​=ca±b​=2360∘n+44∘−4​
Join 360∘n+44∘−4:4516200∘n+1980∘−180​
360∘n+44∘−4
Convert element to fraction: 360∘n=45360∘n45​,4=454⋅45​=45360∘n⋅45​+44∘−454⋅45​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=45360∘n⋅45+1980∘−4⋅45​
360∘n⋅45+1980∘−4⋅45=16200∘n+1980∘−180
360∘n⋅45+1980∘−4⋅45
Multiply the numbers: 2⋅45=90=16200∘n+1980∘−4⋅45
Multiply the numbers: 4⋅45=180=16200∘n+1980∘−180
=4516200∘n+1980∘−180​
=24516200∘n+1980∘−180​​
Apply the fraction rule: acb​​=c⋅ab​=45⋅216200∘n+1980∘−180​
Multiply the numbers: 45⋅2=90=9016200∘n+1980∘−180​
x=9016200∘n+1980∘−180​
x=9016200∘n+1980∘−180​
x=9016200∘n+1980∘−180​
2x+4=180∘−(90∘−46∘)+360∘n:x=453060∘+8100∘n−90​
2x+4=180∘−(90∘−46∘)+360∘n
Move 4to the right side
2x+4=180∘−(90∘−46∘)+360∘n
Subtract 4 from both sides2x+4−4=180∘−(90∘−46∘)+360∘n−4
Simplify
2x+4−4=180∘−(90∘−46∘)+360∘n−4
Simplify 2x+4−4:2x
2x+4−4
Add similar elements: 4−4=0
=2x
Simplify 180∘−(90∘−46∘)+360∘n−4:180∘−44∘+360∘n−4
180∘−(90∘−46∘)+360∘n−4
Join 90∘−46∘:44∘
90∘−46∘
Least Common Multiplier of 2,90:90
2,90
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 90:2⋅3⋅3⋅5
90
90divides by 290=45⋅2=2⋅45
45divides by 345=15⋅3=2⋅3⋅15
15divides by 315=5⋅3=2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 90=2⋅3⋅3⋅5
Multiply the numbers: 2⋅3⋅3⋅5=90=90
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 90
For 90∘:multiply the denominator and numerator by 4590∘=2⋅45180∘45​=90∘
=90∘−46∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=90180∘45−4140∘​
Add similar elements: 8100∘−4140∘=3960∘=44∘
Cancel the common factor: 2=44∘
=180∘−44∘+360∘n−4
2x=180∘−44∘+360∘n−4
2x=180∘−44∘+360∘n−4
2x=180∘−44∘+360∘n−4
Divide both sides by 2
2x=180∘−44∘+360∘n−4
Divide both sides by 222x​=90∘−244∘​+2360∘n​−24​
Simplify
22x​=90∘−244∘​+2360∘n​−24​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 90∘−244∘​+2360∘n​−24​:453060∘+8100∘n−90​
90∘−244∘​+2360∘n​−24​
Group like terms=90∘−24​+2360∘n​−244∘​
Apply rule ca​±cb​=ca±b​=2180∘−4+360∘n−44∘​
Join 180∘−4+360∘n−44∘:456120∘+16200∘n−180​
180∘−4+360∘n−44∘
Convert element to fraction: 180∘=180∘,4=454⋅45​,360∘n=45360∘n45​=180∘−454⋅45​+45360∘n⋅45​−44∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=45180∘45−4⋅45+360∘n⋅45−1980∘​
180∘45−4⋅45+360∘n⋅45−1980∘=6120∘+16200∘n−180
180∘45−4⋅45+360∘n⋅45−1980∘
Group like terms=8100∘−1980∘+2⋅8100∘n−4⋅45
Add similar elements: 8100∘−1980∘=6120∘=6120∘+2⋅8100∘n−4⋅45
Multiply the numbers: 2⋅45=90=6120∘+16200∘n−4⋅45
Multiply the numbers: 4⋅45=180=6120∘+16200∘n−180
=456120∘+16200∘n−180​
=2456120∘+16200∘n−180​​
Apply the fraction rule: acb​​=c⋅ab​=45⋅26120∘+16200∘n−180​
Multiply the numbers: 45⋅2=90=906120∘+16200∘n−180​
Factor 6120∘+16200∘n−180:2(3060∘+8100∘n−90)
6120∘+16200∘n−180
Rewrite as=2⋅3060∘+2⋅8100∘n−2⋅90
Factor out common term 2=2(3060∘+8100∘n−90)
=902(3060∘+8100∘n−90)​
Cancel the common factor: 2=453060∘+8100∘n−90​
x=453060∘+8100∘n−90​
x=453060∘+8100∘n−90​
x=453060∘+8100∘n−90​
x=9016200∘n+1980∘−180​,x=453060∘+8100∘n−90​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)=((8k-7))/72cos^2(x)-7cos(x)=-3cos^2(x)=(3(1-sin(x)))/29.8*sin(α)-1.96*cos(α)=0.47cos(pi+x)= 1/(sqrt(2))

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(2x+4)=cos(46) ?

    The general solution for sin(2x+4)=cos(46) is x=(16200n+1980-180)/(90),x=(3060+8100n-90)/(45)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024