Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-1<sec(x)<1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−1<sec(x)<1

Solution

Falseforallx∈R
Solution steps
−1<sec(x)<1
If a<u<bthen a<uandu<b−1<sec(x)andsec(x)<1
−1<sec(x):−2π​+2πn<x<2π​+2πn
−1<sec(x)
Switch sidessec(x)>−1
Express with sin, cos
sec(x)>−1
Use the basic trigonometric identity: sec(x)=cos(x)1​cos(x)1​>−1
cos(x)1​>−1
Rewrite in standard form
cos(x)1​>−1
Add 1 to both sidescos(x)1​+1>−1+1
Simplifycos(x)1​+1>0
Simplify cos(x)1​+1:cos(x)1+cos(x)​
cos(x)1​+1
Convert element to fraction: 1=cos(x)1cos(x)​=cos(x)1​+cos(x)1⋅cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)1+1⋅cos(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)1+cos(x)​
cos(x)1+cos(x)​>0
cos(x)1+cos(x)​>0
Identify the intervals
Find the signs of the factors of cos(x)1+cos(x)​
Find the signs of 1+cos(x)
1+cos(x)=0:cos(x)=−1
1+cos(x)=0
Move 1to the right side
1+cos(x)=0
Subtract 1 from both sides1+cos(x)−1=0−1
Simplifycos(x)=−1
cos(x)=−1
1+cos(x)<0:cos(x)<−1
1+cos(x)<0
Move 1to the right side
1+cos(x)<0
Subtract 1 from both sides1+cos(x)−1<0−1
Simplifycos(x)<−1
cos(x)<−1
1+cos(x)>0:cos(x)>−1
1+cos(x)>0
Move 1to the right side
1+cos(x)>0
Subtract 1 from both sides1+cos(x)−1>0−1
Simplifycos(x)>−1
cos(x)>−1
Find the signs of cos(x)
cos(x)=0
cos(x)<0
cos(x)>0
Find singularity points
Find the zeros of the denominator cos(x):cos(x)=0
Summarize in a table:1+cos(x)cos(x)cos(x)1+cos(x)​​cos(x)<−1−−+​cos(x)=−10−0​−1<cos(x)<0+−−​cos(x)=0+0Undefined​cos(x)>0+++​​
Identify the intervals that satisfy the required condition: >0cos(x)<−1orcos(x)>0
cos(x)<−1orcos(x)>0
cos(x)<−1:False for all x∈R
cos(x)<−1
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)<−1and−1≤cos(x)≤1:False
Let y=cos(x)
Combine the intervalsy<−1and−1≤y≤1
Merge Overlapping Intervals
y<−1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y<−1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
cos(x)>0:−2π​+2πn<x<2π​+2πn
cos(x)>0
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(0)+2πn<x<arccos(0)+2πn
Simplify −arccos(0):−2π​
−arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−2π​
Simplify arccos(0):2π​
arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​
−2π​+2πn<x<2π​+2πn
Combine the intervalsFalseforallx∈Ror−2π​+2πn<x<2π​+2πn
Merge Overlapping Intervals−2π​+2πn<x<2π​+2πn
sec(x)<1:2π​+2πn<x<23π​+2πn
sec(x)<1
Express with sin, cos
sec(x)<1
Use the basic trigonometric identity: sec(x)=cos(x)1​cos(x)1​<1
cos(x)1​<1
Rewrite in standard form
cos(x)1​<1
Subtract 1 from both sidescos(x)1​−1<1−1
Simplifycos(x)1​−1<0
Simplify cos(x)1​−1:cos(x)1−cos(x)​
cos(x)1​−1
Convert element to fraction: 1=cos(x)1cos(x)​=cos(x)1​−cos(x)1⋅cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)1−1⋅cos(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)1−cos(x)​
cos(x)1−cos(x)​<0
cos(x)1−cos(x)​<0
Identify the intervals
Find the signs of the factors of cos(x)1−cos(x)​
Find the signs of 1−cos(x)
1−cos(x)=0:cos(x)=1
1−cos(x)=0
Move 1to the right side
1−cos(x)=0
Subtract 1 from both sides1−cos(x)−1=0−1
Simplify−cos(x)=−1
−cos(x)=−1
Divide both sides by −1
−cos(x)=−1
Divide both sides by −1−1−cos(x)​=−1−1​
Simplifycos(x)=1
cos(x)=1
1−cos(x)<0:cos(x)>1
1−cos(x)<0
Move 1to the right side
1−cos(x)<0
Subtract 1 from both sides1−cos(x)−1<0−1
Simplify−cos(x)<−1
−cos(x)<−1
Multiply both sides by −1
−cos(x)<−1
Multiply both sides by -1 (reverse the inequality)(−cos(x))(−1)>(−1)(−1)
Simplifycos(x)>1
cos(x)>1
1−cos(x)>0:cos(x)<1
1−cos(x)>0
Move 1to the right side
1−cos(x)>0
Subtract 1 from both sides1−cos(x)−1>0−1
Simplify−cos(x)>−1
−cos(x)>−1
Multiply both sides by −1
−cos(x)>−1
Multiply both sides by -1 (reverse the inequality)(−cos(x))(−1)<(−1)(−1)
Simplifycos(x)<1
cos(x)<1
Find the signs of cos(x)
cos(x)=0
cos(x)<0
cos(x)>0
Find singularity points
Find the zeros of the denominator cos(x):cos(x)=0
Summarize in a table:1−cos(x)cos(x)cos(x)1−cos(x)​​cos(x)<0+−−​cos(x)=0+0Undefined​0<cos(x)<1+++​cos(x)=10+0​cos(x)>1−+−​​
Identify the intervals that satisfy the required condition: <0cos(x)<0orcos(x)>1
cos(x)<0orcos(x)>1
cos(x)<0:2π​+2πn<x<23π​+2πn
cos(x)<0
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(0)+2πn<x<2π−arccos(0)+2πn
Simplify arccos(0):2π​
arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​
Simplify 2π−arccos(0):23π​
2π−arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−2π​
Simplify
2π−2π​
Convert element to fraction: 2π=22π2​=22π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22π2−π​
2π2−π=3π
2π2−π
Multiply the numbers: 2⋅2=4=4π−π
Add similar elements: 4π−π=3π=3π
=23π​
=23π​
2π​+2πn<x<23π​+2πn
cos(x)>1:False for all x∈R
cos(x)>1
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)>1and−1≤cos(x)≤1:False
Let y=cos(x)
Combine the intervalsy>1and−1≤y≤1
Merge Overlapping Intervals
y>1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervals2π​+2πn<x<23π​+2πnorFalseforallx∈R
Merge Overlapping Intervals2π​+2πn<x<23π​+2πn
Combine the intervals−2π​+2πn<x<2π​+2πnand2π​+2πn<x<23π​+2πn
Merge Overlapping IntervalsFalseforallx∈R

Popular Examples

-1<tan(x/2)<-1/5−1<tan(2x​)<−51​1<= sin(θ)<31≤sin(θ)<3cos(θ)>0\land sin(θ)<0cos(θ)>0andsin(θ)<0tan(θ)=1\land cos(θ)>0,csc(θ)tan(θ)=1andcos(θ)>0,csc(θ)-1<sin(x)<= 0−1<sin(x)≤0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024