Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-1<tan(x/2)<-1/5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−1<tan(2x​)<−51​

Solution

23π​+2πn<x<−2arctan(51​)+2π+2πn
+2
Interval Notation
(23π​+2πn,−2arctan(51​)+2π+2πn)
Decimal
4.71238…+2πn<x<5.88839…+2πn
Solution steps
−1<tan(2x​)<−51​
If a<u<bthen a<uandu<b−1<tan(2x​)andtan(2x​)<−51​
−1<tan(2x​):−2π​+2πn<x<π+2πn
−1<tan(2x​)
Switch sidestan(2x​)>−1
If tan(x)>athen arctan(a)+πn<x<2π​+πnarctan(−1)+πn<2x​<2π​+πn
If a<u<bthen a<uandu<barctan(−1)+πn<2x​and2x​<2π​+πn
arctan(−1)+πn<2x​:x>−2π​+2πn
arctan(−1)+πn<2x​
Switch sides2x​>arctan(−1)+πn
Simplify arctan(−1)+πn:−4π​+πn
arctan(−1)+πn
arctan(−1)=−4π​
arctan(−1)
Use the following property: arctan(−x)=−arctan(x)arctan(−1)=−arctan(1)=−arctan(1)
Use the following trivial identity:arctan(1)=4π​
arctan(1)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=4π​
=−4π​
=−4π​+πn
2x​>−4π​+πn
Multiply both sides by 2
2x​>−4π​+πn
Multiply both sides by 222x​>−2⋅4π​+2πn
Simplify
22x​>−2⋅4π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify −2⋅4π​+2πn:−2π​+2πn
−2⋅4π​+2πn
2⋅4π​=2π​
2⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
=−2π​+2πn
x>−2π​+2πn
x>−2π​+2πn
x>−2π​+2πn
2x​<2π​+πn:x<π+2πn
2x​<2π​+πn
Multiply both sides by 2
2x​<2π​+πn
Multiply both sides by 222x​<2⋅2π​+2πn
Simplify
22x​<2⋅2π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2π​+2πn:π+2πn
2⋅2π​+2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
=π+2πn
x<π+2πn
x<π+2πn
x<π+2πn
Combine the intervalsx>−2π​+2πnandx<π+2πn
Merge Overlapping Intervals−2π​+2πn<x<π+2πn
tan(2x​)<−51​:−π+2πn<x<−2arctan(51​)+2πn
tan(2x​)<−51​
If tan(x)<athen −2π​+πn<x<arctan(a)+πn−2π​+πn<2x​<arctan(−51​)+πn
If a<u<bthen a<uandu<b−2π​+πn<2x​and2x​<arctan(−51​)+πn
−2π​+πn<2x​:x>−π+2πn
−2π​+πn<2x​
Switch sides2x​>−2π​+πn
Multiply both sides by 2
2x​>−2π​+πn
Multiply both sides by 222x​>−2⋅2π​+2πn
Simplify
22x​>−2⋅2π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify −2⋅2π​+2πn:−π+2πn
−2⋅2π​+2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
=−π+2πn
x>−π+2πn
x>−π+2πn
x>−π+2πn
2x​<arctan(−51​)+πn:x<−2arctan(51​)+2πn
2x​<arctan(−51​)+πn
Simplify arctan(−51​)+πn:−arctan(51​)+πn
arctan(−51​)+πn
Use the following property: arctan(−x)=−arctan(x)arctan(−51​)=−arctan(51​)=−arctan(51​)+πn
2x​<−arctan(51​)+πn
Multiply both sides by 2
2x​<−arctan(51​)+πn
Multiply both sides by 222x​<−2arctan(51​)+2πn
Simplifyx<−2arctan(51​)+2πn
x<−2arctan(51​)+2πn
Combine the intervalsx>−π+2πnandx<−2arctan(51​)+2πn
Merge Overlapping Intervals−π+2πn<x<−2arctan(51​)+2πn
Combine the intervals−2π​+2πn<x<π+2πnand−π+2πn<x<−2arctan(51​)+2πn
Merge Overlapping Intervals23π​+2πn<x<−2arctan(51​)+2π+2πn

Popular Examples

1<= sin(θ)<31≤sin(θ)<3cos(θ)>0\land sin(θ)<0cos(θ)>0andsin(θ)<0tan(θ)=1\land cos(θ)>0,csc(θ)tan(θ)=1andcos(θ)>0,csc(θ)-1<sin(x)<= 0−1<sin(x)≤0tan(θ)= 1/3 \land sin(θ)<0tan(θ)=31​andsin(θ)<0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024