Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(θ)<0\land (csc(θ))(cos(θ))>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(θ)<0and(csc(θ))(cos(θ))>0

Solution

Falseforallθ∈R
Solution steps
sin(θ)<0and(csc(θ))(cos(θ))>0
sin(θ)<0:−π+2πn<θ<2πn
sin(θ)<0
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(0)+2πn<θ<arcsin(0)+2πn
Simplify −π−arcsin(0):−π
−π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0
−π−0=−π=−π
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
−π+2πn<θ<0+2πn
Simplify−π+2πn<θ<2πn
csc(θ)cos(θ)>0:πn<θ<2π​+πn
csc(θ)cos(θ)>0
Periodicity of csc(θ)cos(θ):π
csc(θ)cos(θ)is composed of the following functions and periods:csc(θ)with periodicity of 2π
The compound periodicity is:=π
Express with sin, cos
csc(θ)cos(θ)>0
Use the basic trigonometric identity: csc(x)=sin(x)1​sin(θ)1​cos(θ)>0
sin(θ)1​cos(θ)>0
Simplify sin(θ)1​cos(θ):sin(θ)cos(θ)​
sin(θ)1​cos(θ)
Multiply fractions: a⋅cb​=ca⋅b​=sin(θ)1⋅cos(θ)​
Multiply: 1⋅cos(θ)=cos(θ)=sin(θ)cos(θ)​
sin(θ)cos(θ)​>0
Find the zeroes and undifined points of sin(θ)cos(θ)​for 0≤θ<π
To find the zeroes, set the inequality to zerosin(θ)cos(θ)​=0
sin(θ)cos(θ)​=0,0≤θ<π:θ=2π​
sin(θ)cos(θ)​=0,0≤θ<π
Rewrite using trig identities
sin(θ)cos(θ)​
Use the basic trigonometric identity: sin(x)cos(x)​=cot(x)=cot(θ)
cot(θ)=0
General solutions for cot(θ)=0
cot(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cot(x)∓∞3​133​​0−33​​−1−3​​​
θ=2π​+πn
θ=2π​+πn
Solutions for the range 0≤θ<πθ=2π​
Find the undefined points:θ=0
Find the zeros of the denominatorsin(θ)=0
General solutions for sin(θ)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=0+2πn,θ=π+2πn
θ=0+2πn,θ=π+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn,θ=π+2πn
Solutions for the range 0≤θ<πθ=0
0,2π​
Identify the intervals0<θ<2π​,2π​<θ<π
Summarize in a table:cos(θ)sin(θ)sin(θ)cos(θ)​​θ=0+0Undefined​0<θ<2π​+++​θ=2π​0+0​2π​<θ<π−+−​θ=π−0Undefined​​
Identify the intervals that satisfy the required condition: >00<θ<2π​
Apply the periodicity of csc(θ)cos(θ)πn<θ<2π​+πn
Combine the intervals−π+2πn<θ<2πnandπn<θ<2π​+πn
Merge Overlapping IntervalsFalseforallθ∈R

Popular Examples

cosh(θ)= 12/7 \land θ<0,sinh(θ)cosh(θ)=712​andθ<0,sinh(θ)0<= sin^2(x)<= 10≤sin2(x)≤1cos(θ)=45\land 0<θ<90,sec(θ)cos(θ)=45and0∘<θ<90∘,sec(θ)sin(θ)<0\land cot(θ)<0sin(θ)<0andcot(θ)<05<= 20cos(pi/(20)(x-20))+23<= 205≤20cos(20π​(x−20))+23≤20
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024