Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

5<= 20cos(pi/(20)(x-20))+23<= 20

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

5≤20cos(20π​(x−20))+23≤20

Solution

π−20arccos(−109​)+20π​+40n≤x≤π20π−20arccos(−203​)​+40norπ20arccos(−203​)+20π​+40n≤x≤π20arccos(−109​)+20π​+40n
+2
Interval Notation
[π−20arccos(−109​)+20π​+40n,π20π−20arccos(−203​)​+40n]∪[π20arccos(−203​)+20π​+40n,π20arccos(−109​)+20π​+40n]
Decimal
2.87132…+40n≤x≤9.04145…+40nor30.95854…+40n≤x≤37.12867…+40n
Solution steps
5≤20cos(20π​(x−20))+23≤20
If a≤u≤bthen a≤uandu≤b5≤20cos(20π​(x−20))+23and20cos(20π​(x−20))+23≤20
5≤20cos(20π​(x−20))+23:π−20arccos(−109​)+20π​+40n≤x≤π20arccos(−109​)+20π​+40n
5≤20cos(20π​(x−20))+23
Switch sides20cos(20π​(x−20))+23≥5
Move 23to the right side
20cos(20π​(x−20))+23≥5
Subtract 23 from both sides20cos(20π​(x−20))+23−23≥5−23
Simplify20cos(20π​(x−20))≥−18
20cos(20π​(x−20))≥−18
Divide both sides by 20
20cos(20π​(x−20))≥−18
Divide both sides by 202020cos(20π​(x−20))​≥20−18​
Simplify
2020cos(20π​(x−20))​≥20−18​
Simplify 2020cos(20π​(x−20))​:cos(20π​(x−20))
2020cos(20π​(x−20))​
Divide the numbers: 2020​=1=cos(20π​(x−20))
Simplify 20−18​:−109​
20−18​
Apply the fraction rule: b−a​=−ba​=−2018​
Cancel the common factor: 2=−109​
cos(20π​(x−20))≥−109​
cos(20π​(x−20))≥−109​
cos(20π​(x−20))≥−109​
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(−109​)+2πn≤20π​(x−20)≤arccos(−109​)+2πn
If a≤u≤bthen a≤uandu≤b−arccos(−109​)+2πn≤20π​(x−20)and20π​(x−20)≤arccos(−109​)+2πn
−arccos(−109​)+2πn≤20π​(x−20):x≥π−20arccos(−109​)+20π​+40n
−arccos(−109​)+2πn≤20π​(x−20)
Switch sides20π​(x−20)≥−arccos(−109​)+2πn
Multiply both sides by 20
20π​(x−20)≥−arccos(−109​)+2πn
Multiply both sides by 2020⋅20π​(x−20)≥−20arccos(−109​)+20⋅2πn
Simplify
20⋅20π​(x−20)≥−20arccos(−109​)+20⋅2πn
Simplify 20⋅20π​(x−20):π(x−20)
20⋅20π​(x−20)
Multiply fractions: a⋅cb​=ca⋅b​=2020π​(x−20)
Cancel the common factor: 20=(x−20)π
Simplify −20arccos(−109​)+20⋅2πn:−20arccos(−109​)+40πn
−20arccos(−109​)+20⋅2πn
Multiply the numbers: 20⋅2=40=−20arccos(−109​)+40πn
π(x−20)≥−20arccos(−109​)+40πn
π(x−20)≥−20arccos(−109​)+40πn
π(x−20)≥−20arccos(−109​)+40πn
Divide both sides by π
π(x−20)≥−20arccos(−109​)+40πn
Divide both sides by πππ(x−20)​≥−π20arccos(−109​)​+π40πn​
Simplifyx−20≥−π20arccos(−109​)​+40n
x−20≥−π20arccos(−109​)​+40n
Move 20to the right side
x−20≥−π20arccos(−109​)​+40n
Add 20 to both sidesx−20+20≥−π20arccos(−109​)​+40n+20
Simplifyx≥−π20arccos(−109​)​+40n+20
x≥−π20arccos(−109​)​+40n+20
Simplify −π20arccos(−109​)​+20:π−20arccos(−109​)+20π​
−π20arccos(−109​)​+20
Convert element to fraction: 20=π20π​=−π20arccos(−109​)​+π20π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π−20arccos(−109​)+20π​
x≥π−20arccos(−109​)+20π​+40n
20π​(x−20)≤arccos(−109​)+2πn:x≤π20arccos(−109​)+20π​+40n
20π​(x−20)≤arccos(−109​)+2πn
Multiply both sides by 20
20π​(x−20)≤arccos(−109​)+2πn
Multiply both sides by 2020⋅20π​(x−20)≤20arccos(−109​)+20⋅2πn
Simplify
20⋅20π​(x−20)≤20arccos(−109​)+20⋅2πn
Simplify 20⋅20π​(x−20):π(x−20)
20⋅20π​(x−20)
Multiply fractions: a⋅cb​=ca⋅b​=2020π​(x−20)
Cancel the common factor: 20=(x−20)π
Simplify 20arccos(−109​)+20⋅2πn:20arccos(−109​)+40πn
20arccos(−109​)+20⋅2πn
Multiply the numbers: 20⋅2=40=20arccos(−109​)+40πn
π(x−20)≤20arccos(−109​)+40πn
π(x−20)≤20arccos(−109​)+40πn
π(x−20)≤20arccos(−109​)+40πn
Divide both sides by π
π(x−20)≤20arccos(−109​)+40πn
Divide both sides by πππ(x−20)​≤π20arccos(−109​)​+π40πn​
Simplifyx−20≤π20arccos(−109​)​+40n
x−20≤π20arccos(−109​)​+40n
Move 20to the right side
x−20≤π20arccos(−109​)​+40n
Add 20 to both sidesx−20+20≤π20arccos(−109​)​+40n+20
Simplifyx≤π20arccos(−109​)​+40n+20
x≤π20arccos(−109​)​+40n+20
Simplify π20arccos(−109​)​+20:π20arccos(−109​)+20π​
π20arccos(−109​)​+20
Convert element to fraction: 20=π20π​=π20arccos(−109​)​+π20π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π20arccos(−109​)+20π​
x≤π20arccos(−109​)+20π​+40n
Combine the intervalsx≥π−20arccos(−109​)+20π​+40nandx≤π20arccos(−109​)+20π​+40n
Merge Overlapping Intervalsπ−20arccos(−109​)+20π​+40n≤x≤π20arccos(−109​)+20π​+40n
20cos(20π​(x−20))+23≤20:π20arccos(−203​)+20π​+40n≤x≤π60π−20arccos(−203​)​+40n
20cos(20π​(x−20))+23≤20
Move 23to the right side
20cos(20π​(x−20))+23≤20
Subtract 23 from both sides20cos(20π​(x−20))+23−23≤20−23
Simplify20cos(20π​(x−20))≤−3
20cos(20π​(x−20))≤−3
Divide both sides by 20
20cos(20π​(x−20))≤−3
Divide both sides by 202020cos(20π​(x−20))​≤20−3​
Simplifycos(20π​(x−20))≤−203​
cos(20π​(x−20))≤−203​
For cos(x)≤a, if −1<a<1 then arccos(a)+2πn≤x≤2π−arccos(a)+2πnarccos(−203​)+2πn≤20π​(x−20)≤2π−arccos(−203​)+2πn
If a≤u≤bthen a≤uandu≤barccos(−203​)+2πn≤20π​(x−20)and20π​(x−20)≤2π−arccos(−203​)+2πn
arccos(−203​)+2πn≤20π​(x−20):x≥π20arccos(−203​)+20π​+40n
arccos(−203​)+2πn≤20π​(x−20)
Switch sides20π​(x−20)≥arccos(−203​)+2πn
Multiply both sides by 20
20π​(x−20)≥arccos(−203​)+2πn
Multiply both sides by 2020⋅20π​(x−20)≥20arccos(−203​)+20⋅2πn
Simplify
20⋅20π​(x−20)≥20arccos(−203​)+20⋅2πn
Simplify 20⋅20π​(x−20):π(x−20)
20⋅20π​(x−20)
Multiply fractions: a⋅cb​=ca⋅b​=2020π​(x−20)
Cancel the common factor: 20=(x−20)π
Simplify 20arccos(−203​)+20⋅2πn:20arccos(−203​)+40πn
20arccos(−203​)+20⋅2πn
Multiply the numbers: 20⋅2=40=20arccos(−203​)+40πn
π(x−20)≥20arccos(−203​)+40πn
π(x−20)≥20arccos(−203​)+40πn
π(x−20)≥20arccos(−203​)+40πn
Divide both sides by π
π(x−20)≥20arccos(−203​)+40πn
Divide both sides by πππ(x−20)​≥π20arccos(−203​)​+π40πn​
Simplifyx−20≥π20arccos(−203​)​+40n
x−20≥π20arccos(−203​)​+40n
Move 20to the right side
x−20≥π20arccos(−203​)​+40n
Add 20 to both sidesx−20+20≥π20arccos(−203​)​+40n+20
Simplifyx≥π20arccos(−203​)​+40n+20
x≥π20arccos(−203​)​+40n+20
Simplify π20arccos(−203​)​+20:π20arccos(−203​)+20π​
π20arccos(−203​)​+20
Convert element to fraction: 20=π20π​=π20arccos(−203​)​+π20π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π20arccos(−203​)+20π​
x≥π20arccos(−203​)+20π​+40n
20π​(x−20)≤2π−arccos(−203​)+2πn:x≤π60π−20arccos(−203​)​+40n
20π​(x−20)≤2π−arccos(−203​)+2πn
Multiply both sides by 20
20π​(x−20)≤2π−arccos(−203​)+2πn
Multiply both sides by 2020⋅20π​(x−20)≤20⋅2π−20arccos(−203​)+20⋅2πn
Simplify
20⋅20π​(x−20)≤20⋅2π−20arccos(−203​)+20⋅2πn
Simplify 20⋅20π​(x−20):π(x−20)
20⋅20π​(x−20)
Multiply fractions: a⋅cb​=ca⋅b​=2020π​(x−20)
Cancel the common factor: 20=(x−20)π
Simplify 20⋅2π−20arccos(−203​)+20⋅2πn:40π−20arccos(−203​)+40πn
20⋅2π−20arccos(−203​)+20⋅2πn
Multiply the numbers: 20⋅2=40=40π−20arccos(−203​)+40πn
π(x−20)≤40π−20arccos(−203​)+40πn
π(x−20)≤40π−20arccos(−203​)+40πn
π(x−20)≤40π−20arccos(−203​)+40πn
Divide both sides by π
π(x−20)≤40π−20arccos(−203​)+40πn
Divide both sides by πππ(x−20)​≤π40π​−π20arccos(−203​)​+π40πn​
Simplify
ππ(x−20)​≤π40π​−π20arccos(−203​)​+π40πn​
Simplify ππ(x−20)​:x−20
ππ(x−20)​
Cancel the common factor: π=x−20
Simplify π40π​−π20arccos(−203​)​+π40πn​:40−π20arccos(−203​)​+40n
π40π​−π20arccos(−203​)​+π40πn​
Cancel π40π​:40
π40π​
Cancel the common factor: π=40
=40−π20arccos(−203​)​+π40πn​
Cancel π40πn​:40n
π40πn​
Cancel the common factor: π=40n
=40−π20arccos(−203​)​+40n
x−20≤40−π20arccos(−203​)​+40n
x−20≤40−π20arccos(−203​)​+40n
x−20≤40−π20arccos(−203​)​+40n
Move 20to the right side
x−20≤40−π20arccos(−203​)​+40n
Add 20 to both sidesx−20+20≤40−π20arccos(−203​)​+40n+20
Simplify
x−20+20≤40−π20arccos(−203​)​+40n+20
Simplify x−20+20:x
x−20+20
Add similar elements: −20+20≤0
=x
Simplify 40−π20arccos(−203​)​+40n+20:40n+60−π20arccos(−203​)​
40−π20arccos(−203​)​+40n+20
Add the numbers: 40+20=60=40n+60−π20arccos(−203​)​
x≤40n+60−π20arccos(−203​)​
x≤40n+60−π20arccos(−203​)​
x≤40n+60−π20arccos(−203​)​
Simplify 60−π20arccos(−203​)​:π60π−20arccos(−203​)​
60−π20arccos(−203​)​
Convert element to fraction: 60=π60π​=π60π​−π20arccos(−203​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π60π−20arccos(−203​)​
x≤π60π−20arccos(−203​)​+40n
Combine the intervalsx≥π20arccos(−203​)+20π​+40nandx≤π60π−20arccos(−203​)​+40n
Merge Overlapping Intervalsπ20arccos(−203​)+20π​+40n≤x≤π60π−20arccos(−203​)​+40n
Combine the intervalsπ−20arccos(−109​)+20π​+40n≤x≤π20arccos(−109​)+20π​+40nandπ20arccos(−203​)+20π​+40n≤x≤π60π−20arccos(−203​)​+40n
Merge Overlapping Intervalsπ−20arccos(−109​)+20π​+40n≤x≤π20π−20arccos(−203​)​+40norπ20arccos(−203​)+20π​+40n≤x≤π20arccos(−109​)+20π​+40n

Popular Examples

tan(θ)=-1\land sin(θ)>0tan(θ)=−1andsin(θ)>0sin(x/2-pi/3)0<= x<= 2pisin(2x​−3π​)0≤x≤2πcos(θ)= 1/4 \land 0>θ>90,tan(θ)cos(θ)=41​and0∘>θ>90∘,tan(θ)csc(θ)>0\land cot(θ)>0csc(θ)>0andcot(θ)>0-(sqrt(2))/2 <sin(x)<(sqrt(2))/2−22​​<sin(x)<22​​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024