Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(x)+4)(sqrt(3)-2sin(x))>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(sin(x)+4)(3​−2sin(x))>0

Solution

−34π​+2πn<x<3π​+2πn
+2
Interval Notation
(−34π​+2πn,3π​+2πn)
Decimal
−4.18879…+2πn<x<1.04719…+2πn
Solution steps
(sin(x)+4)(3​−2sin(x))>0
Let: u=sin(x)(u+4)(3​−2u)>0
(u+4)(3​−2u)>0:−4<u<23​​
(u+4)(3​−2u)>0
Identify the intervals
Find the signs of the factors of (u+4)(3​−2u)
Find the signs of u+4
u+4=0:u=−4
u+4=0
Move 4to the right side
u+4=0
Subtract 4 from both sidesu+4−4=0−4
Simplifyu=−4
u=−4
u+4<0:u<−4
u+4<0
Move 4to the right side
u+4<0
Subtract 4 from both sidesu+4−4<0−4
Simplifyu<−4
u<−4
u+4>0:u>−4
u+4>0
Move 4to the right side
u+4>0
Subtract 4 from both sidesu+4−4>0−4
Simplifyu>−4
u>−4
Find the signs of 3​−2u
3​−2u=0:u=23​​
3​−2u=0
Move 3​to the right side
3​−2u=0
Subtract 3​ from both sides3​−2u−3​=0−3​
Simplify−2u=−3​
−2u=−3​
Divide both sides by −2
−2u=−3​
Divide both sides by −2−2−2u​=−2−3​​
Simplifyu=23​​
u=23​​
3​−2u<0:u>23​​
3​−2u<0
Move 3​to the right side
3​−2u<0
Subtract 3​ from both sides3​−2u−3​<0−3​
Simplify−2u<−3​
−2u<−3​
Multiply both sides by −1
−2u<−3​
Multiply both sides by -1 (reverse the inequality)(−2u)(−1)>(−3​)(−1)
Simplify2u>3​
2u>3​
Divide both sides by 2
2u>3​
Divide both sides by 222u​>23​​
Simplifyu>23​​
u>23​​
3​−2u>0:u<23​​
3​−2u>0
Move 3​to the right side
3​−2u>0
Subtract 3​ from both sides3​−2u−3​>0−3​
Simplify−2u>−3​
−2u>−3​
Multiply both sides by −1
−2u>−3​
Multiply both sides by -1 (reverse the inequality)(−2u)(−1)<(−3​)(−1)
Simplify2u<3​
2u<3​
Divide both sides by 2
2u<3​
Divide both sides by 222u​<23​​
Simplifyu<23​​
u<23​​
Summarize in a table:u+43​−2u(u+4)(3​−2u)​u<−4−+−​u=−40+0​−4<u<23​​+++​u=23​​+00​u>23​​+−−​​
Identify the intervals that satisfy the required condition: >0−4<u<23​​
−4<u<23​​
−4<u<23​​
Substitute back u=sin(x)−4<sin(x)<23​​
If a<u<bthen a<uandu<b−4<sin(x)andsin(x)<23​​
−4<sin(x):True for all x∈R
−4<sin(x)
Switch sidessin(x)>−4
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)>−4and−1≤sin(x)≤1:−1≤sin(x)≤1
Let y=sin(x)
Combine the intervalsy>−4and−1≤y≤1
Merge Overlapping Intervals
y>−4and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>−4and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
sin(x)<23​​:−34π​+2πn<x<3π​+2πn
sin(x)<23​​
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(23​​)+2πn<x<arcsin(23​​)+2πn
Simplify −π−arcsin(23​​):−34π​
−π−arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−3π​
Simplify
−π−3π​
Convert element to fraction: π=3π3​=−3π3​−3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3−π3−π​
Add similar elements: −3π−π=−4π=3−4π​
Apply the fraction rule: b−a​=−ba​=−34π​
=−34π​
Simplify arcsin(23​​):3π​
arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=3π​
−34π​+2πn<x<3π​+2πn
Combine the intervalsTrueforallx∈Rand−34π​+2πn<x<3π​+2πn
Merge Overlapping Intervals−34π​+2πn<x<3π​+2πn

Popular Examples

6.5<= 5+3sin(30t)6.5≤5+3sin(30t)solvefor x,2*cos(4x)<= 5solveforx,2⋅cos(4x)≤52cos^2(x)+cos(x)-1<= 02cos2(x)+cos(x)−1≤0sin(x/3)<(sqrt(3))/2sin(3x​)<23​​tan(x)>=-(sqrt(3))/3tan(x)≥−33​​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024