Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6.5<= 5+3sin(30t)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6.5≤5+3sin(30t)

Solution

180π​+15π​n≤t≤36π​+15π​n
+2
Interval Notation
[180π​+15π​n,36π​+15π​n]
Decimal
0.01745…+15π​n≤t≤0.08726…+15π​n
Solution steps
6.5≤5+3sin(30t)
Switch sides5+3sin(30t)≥6.5
Move 5to the right side
5+3sin(30t)≥6.5
Subtract 5 from both sides5+3sin(30t)−5≥6.5−5
Simplify3sin(30t)≥1.5
3sin(30t)≥1.5
Divide both sides by 3
3sin(30t)≥1.5
Divide both sides by 333sin(30t)​≥31.5​
Simplifysin(30t)≥0.5
sin(30t)≥0.5
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(0.5)+2πn≤30t≤π−arcsin(0.5)+2πn
If a≤u≤bthen a≤uandu≤barcsin(0.5)+2πn≤30tand30t≤π−arcsin(0.5)+2πn
arcsin(0.5)+2πn≤30t:t≥180π​+15πn​
arcsin(0.5)+2πn≤30t
Switch sides30t≥arcsin(0.5)+2πn
Simplify arcsin(0.5)+2πn:6π​+2πn
arcsin(0.5)+2πn
arcsin(0.5)=6π​
arcsin(0.5)
=arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=6π​
=6π​+2πn
30t≥6π​+2πn
Divide both sides by 30
30t≥6π​+2πn
Divide both sides by 303030t​≥306π​​+302πn​
Simplify
3030t​≥306π​​+302πn​
Simplify 3030t​:t
3030t​
Divide the numbers: 3030​=1=t
Simplify 306π​​+302πn​:180π​+15πn​
306π​​+302πn​
306π​​=180π​
306π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅30π​
Multiply the numbers: 6⋅30=180=180π​
302πn​=15πn​
302πn​
Cancel the common factor: 2=15πn​
=180π​+15πn​
t≥180π​+15πn​
t≥180π​+15πn​
t≥180π​+15πn​
30t≤π−arcsin(0.5)+2πn:t≤36π​+15π​n
30t≤π−arcsin(0.5)+2πn
Simplify π−arcsin(0.5)+2πn:π−6π​+2πn
π−arcsin(0.5)+2πn
arcsin(0.5)=6π​
arcsin(0.5)
=arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=6π​
=π−6π​+2πn
30t≤π−6π​+2πn
Divide both sides by 30
30t≤π−6π​+2πn
Divide both sides by 303030t​≤30π​−306π​​+302πn​
Simplify
3030t​≤30π​−306π​​+302πn​
Simplify 3030t​:t
3030t​
Divide the numbers: 3030​=1=t
Simplify 30π​−306π​​+302πn​:30π​−180π​+15πn​
30π​−306π​​+302πn​
306π​​=180π​
306π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅30π​
Multiply the numbers: 6⋅30=180=180π​
302πn​=15πn​
302πn​
Cancel the common factor: 2=15πn​
=30π​−180π​+15πn​
t≤30π​−180π​+15πn​
t≤30π​−180π​+15πn​
Simplify 30π​−180π​:36π​
30π​−180π​
Least Common Multiplier of 30,180:180
30,180
Least Common Multiplier (LCM)
Prime factorization of 30:2⋅3⋅5
30
30divides by 230=15⋅2=2⋅15
15divides by 315=5⋅3=2⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅3⋅5
Prime factorization of 180:2⋅2⋅3⋅3⋅5
180
180divides by 2180=90⋅2=2⋅90
90divides by 290=45⋅2=2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 30 or 180=2⋅2⋅3⋅3⋅5
Multiply the numbers: 2⋅2⋅3⋅3⋅5=180=180
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 180
For 30π​:multiply the denominator and numerator by 630π​=30⋅6π6​=180π6​
=180π6​−180π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180π6−π​
Add similar elements: 6π−π=5π=1805π​
Cancel the common factor: 5=36π​
t≤36π​+15π​n
t≤36π​+15π​n
Combine the intervalst≥180π​+15πn​andt≤36π​+15π​n
Merge Overlapping Intervals180π​+15π​n≤t≤36π​+15π​n

Popular Examples

solvefor x,2*cos(4x)<= 5solveforx,2⋅cos(4x)≤52cos^2(x)+cos(x)-1<= 02cos2(x)+cos(x)−1≤0sin(x/3)<(sqrt(3))/2sin(3x​)<23​​tan(x)>=-(sqrt(3))/3tan(x)≥−33​​(2sin(2x)+1/2)<= 1/2(2sin(2x)+21​)≤21​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024