Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)<= cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)≤cos(x)

Solution

2πn≤x≤0.66623…+2πnor2π​+2πn<x≤π−0.66623…+2πnor23π​+2πn<x≤2π+2πn
+2
Interval Notation
[2πn,0.66623…+2πn]∪(2π​+2πn,π−0.66623…+2πn]∪(23π​+2πn,2π+2πn]
Decimal
2πn≤x≤0.66623…+2πnor1.57079…+2πn<x≤2.47535…+2πnor4.71238…+2πn<x≤6.28318…+2πn
Solution steps
tan(x)≤cos(x)
Move cos(x)to the left side
tan(x)≤cos(x)
Subtract cos(x) from both sidestan(x)−cos(x)≤cos(x)−cos(x)
tan(x)−cos(x)≤0
tan(x)−cos(x)≤0
Periodicity of tan(x)−cos(x):2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodstan(x),cos(x)
Periodicity of tan(x):π
Periodicity of tan(x)is π=π
Periodicity of cos(x):2π
Periodicity of cos(x)is 2π=2π
Combine periods: π,2π
=2π
Express with sin, cos
tan(x)−cos(x)≤0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(x)sin(x)​−cos(x)≤0
cos(x)sin(x)​−cos(x)≤0
Simplify cos(x)sin(x)​−cos(x):cos(x)sin(x)−cos2(x)​
cos(x)sin(x)​−cos(x)
Convert element to fraction: cos(x)=cos(x)cos(x)cos(x)​=cos(x)sin(x)​−cos(x)cos(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)−cos(x)cos(x)​
sin(x)−cos(x)cos(x)=sin(x)−cos2(x)
sin(x)−cos(x)cos(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=sin(x)−cos2(x)
=cos(x)sin(x)−cos2(x)​
cos(x)sin(x)−cos2(x)​≤0
Find the zeroes and undifined points of cos(x)sin(x)−cos2(x)​for 0≤x<2π
To find the zeroes, set the inequality to zerocos(x)sin(x)−cos2(x)​=0
cos(x)sin(x)−cos2(x)​=0,0≤x<2π:x=0.66623…,x=π−0.66623…
cos(x)sin(x)−cos2(x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=0sin(x)−cos2(x)=0
Rewrite using trig identities
−cos2(x)+sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(1−sin2(x))+sin(x)
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=−1+sin2(x)+sin(x)
−1+sin(x)+sin2(x)=0
Solve by substitution
−1+sin(x)+sin2(x)=0
Let: sin(x)=u−1+u+u2=0
−1+u+u2=0:u=2−1+5​​,u=2−1−5​​
−1+u+u2=0
Write in the standard form ax2+bx+c=0u2+u−1=0
Solve with the quadratic formula
u2+u−1=0
Quadratic Equation Formula:
For a=1,b=1,c=−1u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
12−4⋅1⋅(−1)​=5​
12−4⋅1⋅(−1)​
Apply rule 1a=112=1=1−4⋅1⋅(−1)​
Apply rule −(−a)=a=1+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2⋅1−1±5​​
Separate the solutionsu1​=2⋅1−1+5​​,u2​=2⋅1−1−5​​
u=2⋅1−1+5​​:2−1+5​​
2⋅1−1+5​​
Multiply the numbers: 2⋅1=2=2−1+5​​
u=2⋅1−1−5​​:2−1−5​​
2⋅1−1−5​​
Multiply the numbers: 2⋅1=2=2−1−5​​
The solutions to the quadratic equation are:u=2−1+5​​,u=2−1−5​​
Substitute back u=sin(x)sin(x)=2−1+5​​,sin(x)=2−1−5​​
sin(x)=2−1+5​​,sin(x)=2−1−5​​
sin(x)=2−1+5​​,0≤x<2π:x=arcsin(25​−1​),x=π−arcsin(25​−1​)
sin(x)=2−1+5​​,0≤x<2π
Apply trig inverse properties
sin(x)=2−1+5​​
General solutions for sin(x)=2−1+5​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
x=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
Solutions for the range 0≤x<2πx=arcsin(25​−1​),x=π−arcsin(25​−1​)
sin(x)=2−1−5​​,0≤x<2π:No Solution
sin(x)=2−1−5​​,0≤x<2π
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=arcsin(25​−1​),x=π−arcsin(25​−1​)
Show solutions in decimal formx=0.66623…,x=π−0.66623…
Find the undefined points:x=2π​,x=23π​
Find the zeros of the denominatorcos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
0.66623…,2π​,π−0.66623…,23π​
Identify the intervals0<x<0.66623…,0.66623…<x<2π​,2π​<x<π−0.66623…,π−0.66623…<x<23π​,23π​<x<2π
Summarize in a table:sin(x)−cos2(x)cos(x)cos(x)sin(x)−cos2(x)​​x=0−+−​0<x<0.66623…−+−​x=0.66623…0+0​0.66623…<x<2π​+++​x=2π​+0Undefined​2π​<x<π−0.66623…+−−​x=π−0.66623…0−0​π−0.66623…<x<23π​−−+​x=23π​−0Undefined​23π​<x<2π−+−​x=2π−+−​​
Identify the intervals that satisfy the required condition: ≤0x=0or0<x<0.66623…orx=0.66623…or2π​<x<π−0.66623…orx=π−0.66623…or23π​<x<2πorx=2π
Merge Overlapping Intervals
0≤x≤0.66623…or2π​<x≤π−0.66623…or23π​<x<2πorx=2π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<0.66623…
0≤x<0.66623…
The union of two intervals is the set of numbers which are in either interval
0≤x<0.66623…orx=0.66623…
0≤x≤0.66623…
The union of two intervals is the set of numbers which are in either interval
0≤x≤0.66623…or2π​<x<π−0.66623…
0≤x≤0.66623…or2π​<x<π−0.66623…
The union of two intervals is the set of numbers which are in either interval
0≤x≤0.66623…or2π​<x<π−0.66623…orx=π−0.66623…
0≤x≤0.66623…or2π​<x≤π−0.66623…
The union of two intervals is the set of numbers which are in either interval
0≤x≤0.66623…or2π​<x≤π−0.66623…or23π​<x<2π
0≤x≤0.66623…or2π​<x≤π−0.66623…or23π​<x<2π
The union of two intervals is the set of numbers which are in either interval
0≤x≤0.66623…or2π​<x≤π−0.66623…or23π​<x<2πorx=2π
0≤x≤0.66623…or2π​<x≤π−0.66623…or23π​<x≤2π
0≤x≤0.66623…or2π​<x≤π−0.66623…or23π​<x≤2π
Apply the periodicity of tan(x)−cos(x)2πn≤x≤0.66623…+2πnor2π​+2πn<x≤π−0.66623…+2πnor23π​+2πn<x≤2π+2πn

Popular Examples

0.86<= cos^{2(5)}((68)/n)0.86≤cos2(5)(n68​)2sin(x)-1<0,-2pi<= x<= 02sin(x)−1<0,−2π≤x≤0(cos(x))/(1+cos(2x))<01+cos(2x)cos(x)​<0(tan(x)-tan^2(x))/(2sin(x)-1)<02sin(x)−1tan(x)−tan2(x)​<0sin(x)-cos(x)>1sin(x)−cos(x)>1
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024