Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan(x)-tan^2(x))/(2sin(x)-1)<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(x)−1tan(x)−tan2(x)​<0

Solution

2πn<x<6π​+2πnor4π​+2πn<x<2π​+2πnor2π​+2πn<x<65π​+2πnorπ+2πn<x<45π​+2πn
+2
Interval Notation
(2πn,6π​+2πn)∪(4π​+2πn,2π​+2πn)∪(2π​+2πn,65π​+2πn)∪(π+2πn,45π​+2πn)
Decimal
2πn<x<0.52359…+2πnor0.78539…+2πn<x<1.57079…+2πnor1.57079…+2πn<x<2.61799…+2πnor3.14159…+2πn<x<3.92699…+2πn
Solution steps
2sin(x)−1tan(x)−tan2(x)​<0
Periodicity of 2sin(x)−1tan(x)−tan2(x)​:2π
2sin(x)−1tan(x)−tan2(x)​is composed of the following functions and periods:tan(x)with periodicity of π
The compound periodicity is:=2π
Express with sin, cos
2sin(x)−1tan(x)−tan2(x)​<0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​2sin(x)−1cos(x)sin(x)​−(cos(x)sin(x)​)2​<0
2sin(x)−1cos(x)sin(x)​−(cos(x)sin(x)​)2​<0
Simplify 2sin(x)−1cos(x)sin(x)​−(cos(x)sin(x)​)2​:cos2(x)(2sin(x)−1)sin(x)cos(x)−sin2(x)​
2sin(x)−1cos(x)sin(x)​−(cos(x)sin(x)​)2​
Apply exponent rule: (ba​)c=bcac​=2sin(x)−1cos(x)sin(x)​−cos2(x)sin2(x)​​
Join cos(x)sin(x)​−cos2(x)sin2(x)​:cos2(x)sin(x)cos(x)−sin2(x)​
cos(x)sin(x)​−cos2(x)sin2(x)​
Least Common Multiplier of cos(x),cos2(x):cos2(x)
cos(x),cos2(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or cos2(x)=cos2(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos2(x)
For cos(x)sin(x)​:multiply the denominator and numerator by cos(x)cos(x)sin(x)​=cos(x)cos(x)sin(x)cos(x)​=cos2(x)sin(x)cos(x)​
=cos2(x)sin(x)cos(x)​−cos2(x)sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)sin(x)cos(x)−sin2(x)​
=2sin(x)−1cos2(x)sin(x)cos(x)−sin2(x)​​
Apply the fraction rule: acb​​=c⋅ab​=cos2(x)(2sin(x)−1)sin(x)cos(x)−sin2(x)​
cos2(x)(2sin(x)−1)sin(x)cos(x)−sin2(x)​<0
Find the zeroes and undifined points of cos2(x)(2sin(x)−1)sin(x)cos(x)−sin2(x)​for 0≤x<2π
To find the zeroes, set the inequality to zerocos2(x)(2sin(x)−1)sin(x)cos(x)−sin2(x)​=0
cos2(x)(2sin(x)−1)sin(x)cos(x)−sin2(x)​=0,0≤x<2π:x=0,x=π,x=4π​,x=45π​
cos2(x)(2sin(x)−1)sin(x)cos(x)−sin2(x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=0sin(x)cos(x)−sin2(x)=0
Factor sin(x)cos(x)−sin2(x):sin(x)(cos(x)−sin(x))
sin(x)cos(x)−sin2(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=sin(x)cos(x)−sin(x)sin(x)
Factor out common term sin(x)=sin(x)(cos(x)−sin(x))
sin(x)(cos(x)−sin(x))=0
Solving each part separatelysin(x)=0orcos(x)−sin(x)=0
sin(x)=0,0≤x<2π:x=0,x=π
sin(x)=0,0≤x<2π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<2πx=0,x=π
cos(x)−sin(x)=0,0≤x<2π:x=4π​,x=45π​
cos(x)−sin(x)=0,0≤x<2π
Rewrite using trig identities
cos(x)−sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)−sin(x)​=cos(x)0​
Simplify1−cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1−tan(x)=0
1−tan(x)=0
Move 1to the right side
1−tan(x)=0
Subtract 1 from both sides1−tan(x)−1=0−1
Simplify−tan(x)=−1
−tan(x)=−1
Divide both sides by −1
−tan(x)=−1
Divide both sides by −1−1−tan(x)​=−1−1​
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
Solutions for the range 0≤x<2πx=4π​,x=45π​
Combine all the solutionsx=0,x=π,x=4π​,x=45π​
Find the undefined points:x=2π​,x=23π​,x=6π​,x=65π​
Find the zeros of the denominatorcos2(x)(2sin(x)−1)=0
Solving each part separatelycos2(x)=0or2sin(x)−1=0
cos2(x)=0,0≤x<2π:x=2π​,x=23π​
cos2(x)=0,0≤x<2π
Apply rule xn=0⇒x=0
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
2sin(x)−1=0,0≤x<2π:x=6π​,x=65π​
2sin(x)−1=0,0≤x<2π
Move 1to the right side
2sin(x)−1=0
Add 1 to both sides2sin(x)−1+1=0+1
Simplify2sin(x)=1
2sin(x)=1
Divide both sides by 2
2sin(x)=1
Divide both sides by 222sin(x)​=21​
Simplifysin(x)=21​
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Solutions for the range 0≤x<2πx=6π​,x=65π​
Combine all the solutionsx=2π​,x=23π​,x=6π​,x=65π​
0,6π​,4π​,2π​,65π​,π,45π​,23π​
Identify the intervals0<x<6π​,6π​<x<4π​,4π​<x<2π​,2π​<x<65π​,65π​<x<π,π<x<45π​,45π​<x<23π​,23π​<x<2π
Summarize in a table:sin(x)cos(x)−sin2(x)cos2(x)2sin(x)−1cos2(x)(2sin(x)−1)sin(x)cos(x)−sin2(x)​​x=00+−0​0<x<6π​++−−​x=6π​++0Undefined​6π​<x<4π​++++​x=4π​0++0​4π​<x<2π​−++−​x=2π​−0+Undefined​2π​<x<65π​−++−​x=65π​−+0Undefined​65π​<x<π−+−+​x=π0+−0​π<x<45π​++−−​x=45π​0+−0​45π​<x<23π​−+−+​x=23π​−0−Undefined​23π​<x<2π−+−+​x=2π0+−0​​
Identify the intervals that satisfy the required condition: <00<x<6π​or4π​<x<2π​or2π​<x<65π​orπ<x<45π​
Apply the periodicity of 2sin(x)−1tan(x)−tan2(x)​2πn<x<6π​+2πnor4π​+2πn<x<2π​+2πnor2π​+2πn<x<65π​+2πnorπ+2πn<x<45π​+2πn

Popular Examples

sin(x)-cos(x)>1sin(x)−cos(x)>1sin(y)>0sin(y)>02sin(x)+1>= 02sin(x)+1≥0cos^2(x)> 5/6cos2(x)>65​((2cos(x)+1))/((2sin(x)-sqrt(3)))>0(2sin(x)−3​)(2cos(x)+1)​>0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024