Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x, 1/(sin(x))-4<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for x,sin(x)1​−4<0

Solution

arcsin(41​)+2πn<x<π−arcsin(41​)+2πnor−π+2πn<x<2πn
Solution steps
sin(x)1​−4<0
Rewrite in standard form
sin(x)1​−4<0
Simplify sin(x)1​−4:sin(x)1−4sin(x)​
sin(x)1​−4
Convert element to fraction: 4=sin(x)4sin(x)​=sin(x)1​−sin(x)4sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)1−4sin(x)​
sin(x)1−4sin(x)​<0
sin(x)1−4sin(x)​<0
Identify the intervals
Find the signs of the factors of sin(x)1−4sin(x)​
Find the signs of 1−4sin(x)
1−4sin(x)=0:sin(x)=41​
1−4sin(x)=0
Move 1to the right side
1−4sin(x)=0
Subtract 1 from both sides1−4sin(x)−1=0−1
Simplify−4sin(x)=−1
−4sin(x)=−1
Divide both sides by −4
−4sin(x)=−1
Divide both sides by −4−4−4sin(x)​=−4−1​
Simplifysin(x)=41​
sin(x)=41​
1−4sin(x)<0:sin(x)>41​
1−4sin(x)<0
Move 1to the right side
1−4sin(x)<0
Subtract 1 from both sides1−4sin(x)−1<0−1
Simplify−4sin(x)<−1
−4sin(x)<−1
Multiply both sides by −1
−4sin(x)<−1
Multiply both sides by -1 (reverse the inequality)(−4sin(x))(−1)>(−1)(−1)
Simplify4sin(x)>1
4sin(x)>1
Divide both sides by 4
4sin(x)>1
Divide both sides by 444sin(x)​>41​
Simplifysin(x)>41​
sin(x)>41​
1−4sin(x)>0:sin(x)<41​
1−4sin(x)>0
Move 1to the right side
1−4sin(x)>0
Subtract 1 from both sides1−4sin(x)−1>0−1
Simplify−4sin(x)>−1
−4sin(x)>−1
Multiply both sides by −1
−4sin(x)>−1
Multiply both sides by -1 (reverse the inequality)(−4sin(x))(−1)<(−1)(−1)
Simplify4sin(x)<1
4sin(x)<1
Divide both sides by 4
4sin(x)<1
Divide both sides by 444sin(x)​<41​
Simplifysin(x)<41​
sin(x)<41​
Find the signs of sin(x)
sin(x)=0
sin(x)<0
sin(x)>0
Find singularity points
Find the zeros of the denominator sin(x):sin(x)=0
Summarize in a table:1−4sin(x)sin(x)sin(x)1−4sin(x)​​sin(x)<0+−−​sin(x)=0+0Undefined​0<sin(x)<41​+++​sin(x)=41​0+0​sin(x)>41​−+−​​
Identify the intervals that satisfy the required condition: <0sin(x)<0orsin(x)>41​
sin(x)<0orsin(x)>41​
sin(x)<0:−π+2πn<x<2πn
sin(x)<0
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(0)+2πn<x<arcsin(0)+2πn
Simplify −π−arcsin(0):−π
−π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0
−π−0=−π=−π
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
−π+2πn<x<0+2πn
Simplify−π+2πn<x<2πn
sin(x)>41​:arcsin(41​)+2πn<x<π−arcsin(41​)+2πn
sin(x)>41​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(41​)+2πn<x<π−arcsin(41​)+2πn
Combine the intervals−π+2πn<x<2πnorarcsin(41​)+2πn<x<π−arcsin(41​)+2πn
Merge Overlapping Intervalsarcsin(41​)+2πn<x<π−arcsin(41​)+2πnor−π+2πn<x<2πn

Popular Examples

1+cos(x)+sin(x)>01+cos(x)+sin(x)>0cos(x/2)+sqrt(3)sin(x/2)<0cos(2x​)+3​sin(2x​)<0solvefor x, 1/(sqrt(3))<= tan(x)solveforx,3​1​≤tan(x)sin(θ)cos(θ)tan(θ)-cos^2(θ)>0sin(θ)cos(θ)tan(θ)−cos2(θ)>0-3cos(x)+1<= 1−3cos(x)+1≤1
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024