Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(θ)cos(θ)tan(θ)-cos^2(θ)>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(θ)cos(θ)tan(θ)−cos2(θ)>0

Solution

4π​+πn<θ<43π​+πn
+2
Interval Notation
(4π​+πn,43π​+πn)
Decimal
0.78539…+πn<θ<2.35619…+πn
Solution steps
sin(θ)cos(θ)tan(θ)−cos2(θ)>0
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)sin(θ)cos(θ)tan(θ)−(1−sin2(θ))>0
Simplifysin(θ)cos(θ)tan(θ)−1+sin2(θ)>0
Periodicity of sin(θ)cos(θ)tan(θ)−1+sin2(θ):π
Periodicity of f(x)+c=Periodicity of f(x)c=−1=periodicityofsin(θ)cos(θ)tan(θ)+sin2(θ)
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodssin(θ)cos(θ)tan(θ),sin2(θ)
Periodicity of sin(θ)cos(θ)tan(θ):π
sin(θ)cos(θ)tan(θ)is composed of the following functions and periods:sin(θ)with periodicity of 2π
The compound periodicity is:π
Periodicity of sin2(θ):π
Periodicity of sinn(x)=2Periodicityofsin(x)​,if n is even
Periodicity of sin(θ):2π
Periodicity of sin(x)is 2π=2π
22π​
Simplifyπ
Combine periods: π,π
=π
Express with sin, cos
sin(θ)cos(θ)tan(θ)−1+sin2(θ)>0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​sin(θ)cos(θ)cos(θ)sin(θ)​−1+sin2(θ)>0
sin(θ)cos(θ)cos(θ)sin(θ)​−1+sin2(θ)>0
Simplify sin(θ)cos(θ)cos(θ)sin(θ)​−1+sin2(θ):2sin2(θ)−1
sin(θ)cos(θ)cos(θ)sin(θ)​−1+sin2(θ)
sin(θ)cos(θ)cos(θ)sin(θ)​=sin2(θ)
sin(θ)cos(θ)cos(θ)sin(θ)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(θ)sin(θ)sin(θ)cos(θ)​
Cancel the common factor: cos(θ)=sin(θ)sin(θ)
Apply exponent rule: ab⋅ac=ab+csin(θ)sin(θ)=sin1+1(θ)=sin1+1(θ)
Add the numbers: 1+1=2=sin2(θ)
=sin2(θ)−1+sin2(θ)
Group like terms=sin2(θ)+sin2(θ)−1
Add similar elements: sin2(θ)+sin2(θ)=2sin2(θ)=2sin2(θ)−1
2sin2(θ)−1>0
Factor 2sin2(θ)−1:(2​sin(θ)+1)(2​sin(θ)−1)
2sin2(θ)−1
Rewrite 2sin2(θ)−1 as (2​sin(θ))2−12
2sin2(θ)−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2sin2(θ)−1
Rewrite 1 as 12=(2​)2sin2(θ)−12
Apply exponent rule: ambm=(ab)m(2​)2sin2(θ)=(2​sin(θ))2=(2​sin(θ))2−12
=(2​sin(θ))2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​sin(θ))2−12=(2​sin(θ)+1)(2​sin(θ)−1)=(2​sin(θ)+1)(2​sin(θ)−1)
(2​sin(θ)+1)(2​sin(θ)−1)>0
To find the zeroes, set the inequality to zero(2​sin(θ)+1)(2​sin(θ)−1)=0
Solve (2​sin(θ)+1)(2​sin(θ)−1)=0for 0≤θ<π
(2​sin(θ)+1)(2​sin(θ)−1)=0
Solving each part separately
2​sin(θ)−1=0:θ=4π​orθ=43π​
2​sin(θ)−1=0,0≤θ<π
Move 1to the right side
2​sin(θ)−1=0
Add 1 to both sides2​sin(θ)−1+1=0+1
Simplify2​sin(θ)=1
2​sin(θ)=1
Divide both sides by 2​
2​sin(θ)=1
Divide both sides by 2​2​2​sin(θ)​=2​1​
Simplify
2​2​sin(θ)​=2​1​
Simplify 2​2​sin(θ)​:sin(θ)
2​2​sin(θ)​
Cancel the common factor: 2​=sin(θ)
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
sin(θ)=22​​
sin(θ)=22​​
sin(θ)=22​​
General solutions for sin(θ)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=4π​+2πn,θ=43π​+2πn
θ=4π​+2πn,θ=43π​+2πn
Solutions for the range 0≤θ<πθ=4π​,θ=43π​
Combine all the solutions4π​or43π​
The intervals between the zeros0<θ<4π​,4π​<θ<43π​,43π​<θ<π
Summarize in a table:2​sin(θ)+12​sin(θ)−1(2​sin(θ)+1)(2​sin(θ)−1)​θ=0+−−​0<θ<4π​+−−​θ=4π​+00​4π​<θ<43π​+++​θ=43π​+00​43π​<θ<π+−−​θ=π+−−​​
Identify the intervals that satisfy the required condition: >04π​<θ<43π​
Apply the periodicity of sin(θ)cos(θ)tan(θ)−1+sin2(θ)4π​+πn<θ<43π​+πn

Popular Examples

-3cos(x)+1<= 1−3cos(x)+1≤11-tan(x)<= 11−tan(x)≤1sin(x)>sin^2(x)sin(x)>sin2(x)-1/(8sin^3(t))>0−8sin3(t)1​>0cot(x)>= 7/8cot(x)≥87​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024