Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan((5pi)/4+x)+tan((5pi)/4-x)=4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(45π​+x)+tan(45π​−x)=4

Solution

x=65π​+πn,x=6π​+πn
+1
Degrees
x=150∘+180∘n,x=30∘+180∘n
Solution steps
tan(45π​+x)+tan(45π​−x)=4
Rewrite using trig identities
tan(45π​+x)+tan(45π​−x)=4
Rewrite using trig identities
tan(45π​+x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(45π​+x)sin(45π​+x)​
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=cos(45π​+x)sin(45π​)cos(x)+cos(45π​)sin(x)​
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(45π​)cos(x)−sin(45π​)sin(x)sin(45π​)cos(x)+cos(45π​)sin(x)​
Simplify cos(45π​)cos(x)−sin(45π​)sin(x)sin(45π​)cos(x)+cos(45π​)sin(x)​:−sin(x)−cos(x)cos(x)+sin(x)​
cos(45π​)cos(x)−sin(45π​)sin(x)sin(45π​)cos(x)+cos(45π​)sin(x)​
sin(45π​)cos(x)+cos(45π​)sin(x)=−22​​cos(x)−22​​sin(x)
sin(45π​)cos(x)+cos(45π​)sin(x)
sin(45π​)=−22​​
sin(45π​)
Rewrite using trig identities:sin(π)cos(4π​)+cos(π)sin(4π​)
sin(45π​)
Write sin(45π​)as sin(π+4π​)=sin(π+4π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(π)cos(4π​)+cos(π)sin(4π​)
=sin(π)cos(4π​)+cos(π)sin(4π​)
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=0⋅22​​+(−1)22​​
Simplify=−22​​
=−22​​cos(x)+cos(45π​)sin(x)
cos(45π​)=−22​​
cos(45π​)
Rewrite using trig identities:cos(π)cos(4π​)−sin(π)sin(4π​)
cos(45π​)
Write cos(45π​)as cos(π+4π​)=cos(π+4π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(4π​)−sin(π)sin(4π​)
=cos(π)cos(4π​)−sin(π)sin(4π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=(−1)22​​−0⋅22​​
Simplify=−22​​
=−22​​cos(x)−22​​sin(x)
=cos(45π​)cos(x)−sin(45π​)sin(x)−22​​cos(x)−22​​sin(x)​
cos(45π​)cos(x)−sin(45π​)sin(x)=−22​​cos(x)+22​​sin(x)
cos(45π​)cos(x)−sin(45π​)sin(x)
cos(45π​)=−22​​
cos(45π​)
Rewrite using trig identities:cos(π)cos(4π​)−sin(π)sin(4π​)
cos(45π​)
Write cos(45π​)as cos(π+4π​)=cos(π+4π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(4π​)−sin(π)sin(4π​)
=cos(π)cos(4π​)−sin(π)sin(4π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=(−1)22​​−0⋅22​​
Simplify=−22​​
=−22​​cos(x)−sin(45π​)sin(x)
sin(45π​)=−22​​
sin(45π​)
Rewrite using trig identities:sin(π)cos(4π​)+cos(π)sin(4π​)
sin(45π​)
Write sin(45π​)as sin(π+4π​)=sin(π+4π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(π)cos(4π​)+cos(π)sin(4π​)
=sin(π)cos(4π​)+cos(π)sin(4π​)
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=0⋅22​​+(−1)22​​
Simplify=−22​​
=−22​​cos(x)−(−22​​sin(x))
Apply rule −(−a)=a=−22​​cos(x)+22​​sin(x)
=−22​​cos(x)+22​​sin(x)−22​​cos(x)−22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=−22​cos(x)​+22​​sin(x)−22​​cos(x)−22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=−22​cos(x)​+22​sin(x)​−22​​cos(x)−22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=−22​cos(x)​+22​sin(x)​−22​cos(x)​−22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=−22​cos(x)​+22​sin(x)​−22​cos(x)​−22​sin(x)​​
Combine the fractions −22​cos(x)​+22​sin(x)​:2−2​cos(x)+2​sin(x)​
Apply rule ca​±cb​=ca±b​=2−2​cos(x)+2​sin(x)​
=2−2​cos(x)+2​sin(x)​−22​cos(x)​−22​sin(x)​​
Combine the fractions −22​cos(x)​−22​sin(x)​:2−2​cos(x)−2​sin(x)​
Apply rule ca​±cb​=ca±b​=2−2​cos(x)−2​sin(x)​
=2−2​cos(x)+2​sin(x)​2−2​cos(x)−2​sin(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(−2​cos(x)+2​sin(x))(−2​cos(x)−2​sin(x))⋅2​
Cancel the common factor: 2=−2​cos(x)+2​sin(x)−2​cos(x)−2​sin(x)​
Factor out common term 2​=−−2​cos(x)+2​sin(x)2​(cos(x)+sin(x))​
Factor out common term 2​=−2​(−cos(x)+sin(x))2​(cos(x)+sin(x))​
Cancel the common factor: 2​=−sin(x)−cos(x)cos(x)+sin(x)​
=−sin(x)−cos(x)cos(x)+sin(x)​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(45π​−x)sin(45π​−x)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(45π​−x)sin(45π​)cos(x)−cos(45π​)sin(x)​
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(45π​)cos(x)+sin(45π​)sin(x)sin(45π​)cos(x)−cos(45π​)sin(x)​
Simplify cos(45π​)cos(x)+sin(45π​)sin(x)sin(45π​)cos(x)−cos(45π​)sin(x)​:−cos(x)+sin(x)sin(x)−cos(x)​
cos(45π​)cos(x)+sin(45π​)sin(x)sin(45π​)cos(x)−cos(45π​)sin(x)​
sin(45π​)cos(x)−cos(45π​)sin(x)=−22​​cos(x)+22​​sin(x)
sin(45π​)cos(x)−cos(45π​)sin(x)
sin(45π​)=−22​​
sin(45π​)
Rewrite using trig identities:sin(π)cos(4π​)+cos(π)sin(4π​)
sin(45π​)
Write sin(45π​)as sin(π+4π​)=sin(π+4π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(π)cos(4π​)+cos(π)sin(4π​)
=sin(π)cos(4π​)+cos(π)sin(4π​)
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=0⋅22​​+(−1)22​​
Simplify=−22​​
=−22​​cos(x)−cos(45π​)sin(x)
cos(45π​)=−22​​
cos(45π​)
Rewrite using trig identities:cos(π)cos(4π​)−sin(π)sin(4π​)
cos(45π​)
Write cos(45π​)as cos(π+4π​)=cos(π+4π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(4π​)−sin(π)sin(4π​)
=cos(π)cos(4π​)−sin(π)sin(4π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=(−1)22​​−0⋅22​​
Simplify=−22​​
=−22​​cos(x)−(−22​​sin(x))
Apply rule −(−a)=a=−22​​cos(x)+22​​sin(x)
=cos(45π​)cos(x)+sin(45π​)sin(x)−22​​cos(x)+22​​sin(x)​
cos(45π​)cos(x)+sin(45π​)sin(x)=−22​​cos(x)−22​​sin(x)
cos(45π​)cos(x)+sin(45π​)sin(x)
cos(45π​)=−22​​
cos(45π​)
Rewrite using trig identities:cos(π)cos(4π​)−sin(π)sin(4π​)
cos(45π​)
Write cos(45π​)as cos(π+4π​)=cos(π+4π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(4π​)−sin(π)sin(4π​)
=cos(π)cos(4π​)−sin(π)sin(4π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=(−1)22​​−0⋅22​​
Simplify=−22​​
=−22​​cos(x)+sin(45π​)sin(x)
sin(45π​)=−22​​
sin(45π​)
Rewrite using trig identities:sin(π)cos(4π​)+cos(π)sin(4π​)
sin(45π​)
Write sin(45π​)as sin(π+4π​)=sin(π+4π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(π)cos(4π​)+cos(π)sin(4π​)
=sin(π)cos(4π​)+cos(π)sin(4π​)
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=0⋅22​​+(−1)22​​
Simplify=−22​​
=−22​​cos(x)−22​​sin(x)
=−22​​cos(x)−22​​sin(x)−22​​cos(x)+22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=−22​cos(x)​−22​​sin(x)−22​​cos(x)+22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=−22​cos(x)​−22​sin(x)​−22​​cos(x)+22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=−22​cos(x)​−22​sin(x)​−22​cos(x)​+22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=−22​cos(x)​−22​sin(x)​−22​cos(x)​+22​sin(x)​​
Combine the fractions −22​cos(x)​−22​sin(x)​:2−2​cos(x)−2​sin(x)​
Apply rule ca​±cb​=ca±b​=2−2​cos(x)−2​sin(x)​
=2−2​cos(x)−2​sin(x)​−22​cos(x)​+22​sin(x)​​
Combine the fractions −22​cos(x)​+22​sin(x)​:2−2​cos(x)+2​sin(x)​
Apply rule ca​±cb​=ca±b​=2−2​cos(x)+2​sin(x)​
=2−2​cos(x)−2​sin(x)​2−2​cos(x)+2​sin(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(−2​cos(x)−2​sin(x))(−2​cos(x)+2​sin(x))⋅2​
Cancel the common factor: 2=−2​cos(x)−2​sin(x)−2​cos(x)+2​sin(x)​
Factor out common term 2​=−2​cos(x)−2​sin(x)2​(−cos(x)+sin(x))​
Factor out common term 2​=−2​(cos(x)+sin(x))2​(−cos(x)+sin(x))​
Cancel the common factor: 2​=−cos(x)+sin(x)sin(x)−cos(x)​
=−cos(x)+sin(x)sin(x)−cos(x)​
−sin(x)−cos(x)cos(x)+sin(x)​−cos(x)+sin(x)sin(x)−cos(x)​=4
Simplify −sin(x)−cos(x)cos(x)+sin(x)​−cos(x)+sin(x)sin(x)−cos(x)​:(sin(x)−cos(x))(cos(x)+sin(x))−2cos2(x)−2sin2(x)​
−sin(x)−cos(x)cos(x)+sin(x)​−cos(x)+sin(x)sin(x)−cos(x)​
Least Common Multiplier of sin(x)−cos(x),cos(x)+sin(x):(sin(x)−cos(x))(cos(x)+sin(x))
sin(x)−cos(x),cos(x)+sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(x)−cos(x) or cos(x)+sin(x)=(sin(x)−cos(x))(cos(x)+sin(x))
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM (sin(x)−cos(x))(cos(x)+sin(x))
For sin(x)−cos(x)cos(x)+sin(x)​:multiply the denominator and numerator by cos(x)+sin(x)sin(x)−cos(x)cos(x)+sin(x)​=(sin(x)−cos(x))(cos(x)+sin(x))(cos(x)+sin(x))(cos(x)+sin(x))​=(sin(x)−cos(x))(cos(x)+sin(x))(cos(x)+sin(x))2​
For cos(x)+sin(x)sin(x)−cos(x)​:multiply the denominator and numerator by sin(x)−cos(x)cos(x)+sin(x)sin(x)−cos(x)​=(cos(x)+sin(x))(sin(x)−cos(x))(sin(x)−cos(x))(sin(x)−cos(x))​=(sin(x)−cos(x))(cos(x)+sin(x))(sin(x)−cos(x))2​
=−(sin(x)−cos(x))(cos(x)+sin(x))(cos(x)+sin(x))2​−(sin(x)−cos(x))(cos(x)+sin(x))(sin(x)−cos(x))2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(sin(x)−cos(x))(cos(x)+sin(x))−(cos(x)+sin(x))2−(sin(x)−cos(x))2​
Expand −(cos(x)+sin(x))2−(sin(x)−cos(x))2:−2cos2(x)−2sin2(x)
−(cos(x)+sin(x))2−(sin(x)−cos(x))2
(cos(x)+sin(x))2:cos2(x)+2cos(x)sin(x)+sin2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=cos(x),b=sin(x)
=cos2(x)+2cos(x)sin(x)+sin2(x)
=−(cos2(x)+2cos(x)sin(x)+sin2(x))−(sin(x)−cos(x))2
(sin(x)−cos(x))2:sin2(x)−2sin(x)cos(x)+cos2(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=sin(x),b=cos(x)
=sin2(x)−2sin(x)cos(x)+cos2(x)
=−(cos2(x)+2cos(x)sin(x)+sin2(x))−(sin2(x)−2sin(x)cos(x)+cos2(x))
−(cos2(x)+2cos(x)sin(x)+sin2(x)):−cos2(x)−2cos(x)sin(x)−sin2(x)
−(cos2(x)+2cos(x)sin(x)+sin2(x))
Distribute parentheses=−(cos2(x))−(2cos(x)sin(x))−(sin2(x))
Apply minus-plus rules+(−a)=−a=−cos2(x)−2cos(x)sin(x)−sin2(x)
=−cos2(x)−2cos(x)sin(x)−sin2(x)−(sin2(x)−2sin(x)cos(x)+cos2(x))
−(sin2(x)−2sin(x)cos(x)+cos2(x)):−sin2(x)+2sin(x)cos(x)−cos2(x)
−(sin2(x)−2sin(x)cos(x)+cos2(x))
Distribute parentheses=−(sin2(x))−(−2sin(x)cos(x))−(cos2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−sin2(x)+2sin(x)cos(x)−cos2(x)
=−cos2(x)−2cos(x)sin(x)−sin2(x)−sin2(x)+2sin(x)cos(x)−cos2(x)
Simplify −cos2(x)−2cos(x)sin(x)−sin2(x)−sin2(x)+2sin(x)cos(x)−cos2(x):−2cos2(x)−2sin2(x)
−cos2(x)−2cos(x)sin(x)−sin2(x)−sin2(x)+2sin(x)cos(x)−cos2(x)
Add similar elements: −2cos(x)sin(x)+2sin(x)cos(x)=0=−cos2(x)−sin2(x)−sin2(x)−cos2(x)
Add similar elements: −cos2(x)−cos2(x)=−2cos2(x)=−2cos2(x)−sin2(x)−sin2(x)
Add similar elements: −sin2(x)−sin2(x)=−2sin2(x)=−2cos2(x)−2sin2(x)
=−2cos2(x)−2sin2(x)
=(sin(x)−cos(x))(cos(x)+sin(x))−2cos2(x)−2sin2(x)​
(sin(x)−cos(x))(cos(x)+sin(x))−2cos2(x)−2sin2(x)​=4
(sin(x)−cos(x))(cos(x)+sin(x))−2cos2(x)−2sin2(x)​=4
Subtract 4 from both sides(sin(x)−cos(x))(cos(x)+sin(x))−2cos2(x)−2sin2(x)​−4=0
Simplify (sin(x)−cos(x))(cos(x)+sin(x))−2cos2(x)−2sin2(x)​−4:(sin(x)−cos(x))(cos(x)+sin(x))2cos2(x)−6sin2(x)​
(sin(x)−cos(x))(cos(x)+sin(x))−2cos2(x)−2sin2(x)​−4
Convert element to fraction: 4=(sin(x)−cos(x))(cos(x)+sin(x))4(sin(x)−cos(x))(cos(x)+sin(x))​=(sin(x)−cos(x))(cos(x)+sin(x))−2cos2(x)−2sin2(x)​−(sin(x)−cos(x))(cos(x)+sin(x))4(sin(x)−cos(x))(cos(x)+sin(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(sin(x)−cos(x))(cos(x)+sin(x))−2cos2(x)−2sin2(x)−4(sin(x)−cos(x))(cos(x)+sin(x))​
Expand −2cos2(x)−2sin2(x)−4(sin(x)−cos(x))(cos(x)+sin(x)):2cos2(x)−6sin2(x)
−2cos2(x)−2sin2(x)−4(sin(x)−cos(x))(cos(x)+sin(x))
Expand −4(sin(x)−cos(x))(cos(x)+sin(x)):−4sin2(x)+4cos2(x)
Expand (sin(x)−cos(x))(cos(x)+sin(x)):sin2(x)−cos2(x)
(sin(x)−cos(x))(cos(x)+sin(x))
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=sin(x),b=cos(x)=sin2(x)−cos2(x)
=−4(sin2(x)−cos2(x))
Expand −4(sin2(x)−cos2(x)):−4sin2(x)+4cos2(x)
−4(sin2(x)−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−4,b=sin2(x),c=cos2(x)=−4sin2(x)−(−4)cos2(x)
Apply minus-plus rules−(−a)=a=−4sin2(x)+4cos2(x)
=−4sin2(x)+4cos2(x)
=−2cos2(x)−2sin2(x)−4sin2(x)+4cos2(x)
Simplify −2cos2(x)−2sin2(x)−4sin2(x)+4cos2(x):2cos2(x)−6sin2(x)
−2cos2(x)−2sin2(x)−4sin2(x)+4cos2(x)
Add similar elements: −2cos2(x)+4cos2(x)=2cos2(x)=2cos2(x)−2sin2(x)−4sin2(x)
Add similar elements: −2sin2(x)−4sin2(x)=−6sin2(x)=2cos2(x)−6sin2(x)
=2cos2(x)−6sin2(x)
=(sin(x)−cos(x))(cos(x)+sin(x))2cos2(x)−6sin2(x)​
(sin(x)−cos(x))(cos(x)+sin(x))2cos2(x)−6sin2(x)​=0
g(x)f(x)​=0⇒f(x)=02cos2(x)−6sin2(x)=0
Factor 2cos2(x)−6sin2(x):2(cos(x)+3​sin(x))(cos(x)−3​sin(x))
2cos2(x)−6sin2(x)
Rewrite −6 as 3⋅2=2cos2(x)+3⋅2sin2(x)
Factor out common term 2=2(cos2(x)−3sin2(x))
Factor cos2(x)−3sin2(x):(cos(x)+3​sin(x))(cos(x)−3​sin(x))
cos2(x)−3sin2(x)
Rewrite cos2(x)−3sin2(x) as cos2(x)−(3​sin(x))2
cos2(x)−3sin2(x)
Apply radical rule: a=(a​)23=(3​)2=cos2(x)−(3​)2sin2(x)
Apply exponent rule: ambm=(ab)m(3​)2sin2(x)=(3​sin(x))2=cos2(x)−(3​sin(x))2
=cos2(x)−(3​sin(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cos2(x)−(3​sin(x))2=(cos(x)+3​sin(x))(cos(x)−3​sin(x))=(cos(x)+3​sin(x))(cos(x)−3​sin(x))
=2(cos(x)+3​sin(x))(cos(x)−3​sin(x))
2(cos(x)+3​sin(x))(cos(x)−3​sin(x))=0
Solving each part separatelycos(x)+3​sin(x)=0orcos(x)−3​sin(x)=0
cos(x)+3​sin(x)=0:x=65π​+πn
cos(x)+3​sin(x)=0
Rewrite using trig identities
cos(x)+3​sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)+3​sin(x)​=cos(x)0​
Simplify1+cos(x)3​sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1+3​tan(x)=0
1+3​tan(x)=0
Move 1to the right side
1+3​tan(x)=0
Subtract 1 from both sides1+3​tan(x)−1=0−1
Simplify3​tan(x)=−1
3​tan(x)=−1
Divide both sides by 3​
3​tan(x)=−1
Divide both sides by 3​3​3​tan(x)​=3​−1​
Simplify
3​3​tan(x)​=3​−1​
Simplify 3​3​tan(x)​:tan(x)
3​3​tan(x)​
Cancel the common factor: 3​=tan(x)
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
tan(x)=−33​​
tan(x)=−33​​
tan(x)=−33​​
General solutions for tan(x)=−33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=65π​+πn
x=65π​+πn
cos(x)−3​sin(x)=0:x=6π​+πn
cos(x)−3​sin(x)=0
Rewrite using trig identities
cos(x)−3​sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)−3​sin(x)​=cos(x)0​
Simplify1−cos(x)3​sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1−3​tan(x)=0
1−3​tan(x)=0
Move 1to the right side
1−3​tan(x)=0
Subtract 1 from both sides1−3​tan(x)−1=0−1
Simplify−3​tan(x)=−1
−3​tan(x)=−1
Divide both sides by −3​
−3​tan(x)=−1
Divide both sides by −3​−3​−3​tan(x)​=−3​−1​
Simplify
−3​−3​tan(x)​=−3​−1​
Simplify −3​−3​tan(x)​:tan(x)
−3​−3​tan(x)​
Apply the fraction rule: −b−a​=ba​=3​3​tan(x)​
Cancel the common factor: 3​=tan(x)
Simplify −3​−1​:33​​
−3​−1​
Apply the fraction rule: −b−a​=ba​=3​1​
Rationalize 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
=33​​
tan(x)=33​​
tan(x)=33​​
tan(x)=33​​
General solutions for tan(x)=33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=6π​+πn
x=6π​+πn
Combine all the solutionsx=65π​+πn,x=6π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-8cos(8x)=0−8cos(8x)=0tan^2(x)+7tan(x)+9=0tan2(x)+7tan(x)+9=04cos(x)=sec(x)+3,0<= x<2pi4cos(x)=sec(x)+3,0≤x<2πsolvefor x,-1/(2y^2)=3sin(x)-1/8solveforx,−2y21​=3sin(x)−81​sin(θ)=(150sin(115))/(212.6)sin(θ)=212.6150sin(115∘)​

Frequently Asked Questions (FAQ)

  • What is the general solution for tan((5pi)/4+x)+tan((5pi)/4-x)=4 ?

    The general solution for tan((5pi)/4+x)+tan((5pi)/4-x)=4 is x=(5pi)/6+pin,x= pi/6+pin
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024