Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2(sin(x)+1/2)^2+1=3|sin(x)+1/2 |

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2(sin(x)+21​)2+1=3​sin(x)+21​​

Solution

x=23π​+2πn,x=2πn,x=π+2πn,x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=270∘+360∘n,x=0∘+360∘n,x=180∘+360∘n,x=30∘+360∘n,x=150∘+360∘n
Solution steps
2(sin(x)+21​)2+1=3​sin(x)+21​​
Solve by substitution
2(sin(x)+21​)2+1=3​sin(x)+21​​
Let: sin(x)=u2(u+21​)2+1=3​u+21​​
2(u+21​)2+1=3​u+21​​:u=−23​oru=−1oru=0oru=21​
2(u+21​)2+1=3​u+21​​
Find positive and negative intervals
Find intervals for ​u+21​​
u+21​≥0: u≥−21​,​u+21​​=u+21​
u+21​≥0:u≥−21​
u+21​≥0
Move 21​to the right side
u+21​≥0
Subtract 21​ from both sidesu+21​−21​≥0−21​
Simplifyu≥−21​
u≥−21​
Rewrite ​u+21​​for u+21​≥0:​u+21​​=u+21​
Apply absolute rule: If u≥0then ∣u∣=u​u+21​​=u+21​
u+21​<0: u<−21​,​u+21​​=−(u+21​)
u+21​<0:u<−21​
u+21​<0
Move 21​to the right side
u+21​<0
Subtract 21​ from both sidesu+21​−21​<0−21​
Simplifyu<−21​
u<−21​
Rewrite ​u+21​​for u+21​<0:​u+21​​=−(u+21​)
Apply absolute rule: If u<0then ∣u∣=−u​u+21​​=−(u+21​)
Identify the intervals:u<−21​,u≥−21​
​u+21​​​u<−21​−​u≥−21​+​​
u<−21​,u≥−21​
u<−21​,u≥−21​
Solve the inequality for each interval
u<−21​,u≥−21​
For u<−21​:u=−23​oru=−1
For u<−21​rewrite 2(u+21​)2+1=3​u+21​​ as 2(u+21​)2+1=3(−(u+21​))
2(u+21​)2+1=3(−(u+21​)):u=−1,u=−23​
2(u+21​)2+1=3(−(u+21​))
Expand 2(u+21​)2+1:2u2+2u+23​
2(u+21​)2+1
(u+21​)2=u2+u+41​
(u+21​)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u,b=21​
=u2+2u21​+(21​)2
Simplify u2+2u21​+(21​)2:u2+u+41​
u2+2u21​+(21​)2
2u21​=u
2u21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​u
Cancel the common factor: 2=u⋅1
Multiply: u⋅1=u=u
(21​)2=41​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=u2+u+41​
=u2+u+41​
=2(u2+u+41​)+1
Expand 2(u2+u+41​):2u2+2u+21​
2(u2+u+41​)
Distribute parentheses=2u2+2u+2⋅41​
2⋅41​=21​
2⋅41​
Multiply fractions: a⋅cb​=ca⋅b​=41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=2u2+2u+21​
=2u2+2u+21​+1
Combine the fractions 1+21​:23​
1+21​
Convert element to fraction: 1=21⋅2​=21⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2+1​
1⋅2+1=3
1⋅2+1
Multiply the numbers: 1⋅2=2=2+1
Add the numbers: 2+1=3=3
=23​
=2u2+2u+23​
Expand 3(−(u+21​)):−3u−23​
3(−(u+21​))
Remove parentheses: (−a)=−a=−3(u+21​)
Apply the distributive law: a(b+c)=ab+aca=−3,b=u,c=21​=−3u+(−3)21​
Apply minus-plus rules+(−a)=−a=−3u−3⋅21​
3⋅21​=23​
3⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=−3u−23​
2u2+2u+23​=−3u−23​
Move 23​to the left side
2u2+2u+23​=−3u−23​
Add 23​ to both sides2u2+2u+23​+23​=−3u−23​+23​
Simplify2u2+2u+3=−3u
2u2+2u+3=−3u
Move 3uto the left side
2u2+2u+3=−3u
Add 3u to both sides2u2+2u+3+3u=−3u+3u
Simplify2u2+5u+3=0
2u2+5u+3=0
Solve with the quadratic formula
2u2+5u+3=0
Quadratic Equation Formula:
For a=2,b=5,c=3u1,2​=2⋅2−5±52−4⋅2⋅3​​
u1,2​=2⋅2−5±52−4⋅2⋅3​​
52−4⋅2⋅3​=1
52−4⋅2⋅3​
Multiply the numbers: 4⋅2⋅3=24=52−24​
52=25=25−24​
Subtract the numbers: 25−24=1=1​
Apply rule 1​=1=1
u1,2​=2⋅2−5±1​
Separate the solutionsu1​=2⋅2−5+1​,u2​=2⋅2−5−1​
u=2⋅2−5+1​:−1
2⋅2−5+1​
Add/Subtract the numbers: −5+1=−4=2⋅2−4​
Multiply the numbers: 2⋅2=4=4−4​
Apply the fraction rule: b−a​=−ba​=−44​
Apply rule aa​=1=−1
u=2⋅2−5−1​:−23​
2⋅2−5−1​
Subtract the numbers: −5−1=−6=2⋅2−6​
Multiply the numbers: 2⋅2=4=4−6​
Apply the fraction rule: b−a​=−ba​=−46​
Cancel the common factor: 2=−23​
The solutions to the quadratic equation are:u=−1,u=−23​
Combine the intervals(u=−23​oru=−1)and(u<−21​)
Merge Overlapping Intervals
u=−23​oru=−1andu<−21​
The intersection of two intervals is the set of numbers which are in both intervals
u=−23​oru=−1andu<−21​
u=−23​oru=−1
u=−23​oru=−1
For u≥−21​:u=0oru=21​
For u≥−21​rewrite 2(u+21​)2+1=3​u+21​​ as 2(u+21​)2+1=3(u+21​)
2(u+21​)2+1=3(u+21​):u=21​,u=0
2(u+21​)2+1=3(u+21​)
Expand 2(u+21​)2+1:2u2+2u+23​
2(u+21​)2+1
(u+21​)2=u2+u+41​
(u+21​)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u,b=21​
=u2+2u21​+(21​)2
Simplify u2+2u21​+(21​)2:u2+u+41​
u2+2u21​+(21​)2
2u21​=u
2u21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​u
Cancel the common factor: 2=u⋅1
Multiply: u⋅1=u=u
(21​)2=41​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=u2+u+41​
=u2+u+41​
=2(u2+u+41​)+1
Expand 2(u2+u+41​):2u2+2u+21​
2(u2+u+41​)
Distribute parentheses=2u2+2u+2⋅41​
2⋅41​=21​
2⋅41​
Multiply fractions: a⋅cb​=ca⋅b​=41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=2u2+2u+21​
=2u2+2u+21​+1
Combine the fractions 1+21​:23​
1+21​
Convert element to fraction: 1=21⋅2​=21⋅2​+21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2+1​
1⋅2+1=3
1⋅2+1
Multiply the numbers: 1⋅2=2=2+1
Add the numbers: 2+1=3=3
=23​
=2u2+2u+23​
Expand 3(u+21​):3u+23​
3(u+21​)
Apply the distributive law: a(b+c)=ab+aca=3,b=u,c=21​=3u+3⋅21​
3⋅21​=23​
3⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​
Multiply the numbers: 1⋅3=3=23​
=3u+23​
2u2+2u+23​=3u+23​
Move 23​to the left side
2u2+2u+23​=3u+23​
Subtract 23​ from both sides2u2+2u+23​−23​=3u+23​−23​
Simplify2u2+2u=3u
2u2+2u=3u
Move 3uto the left side
2u2+2u=3u
Subtract 3u from both sides2u2+2u−3u=3u−3u
Simplify2u2−u=0
2u2−u=0
Solve with the quadratic formula
2u2−u=0
Quadratic Equation Formula:
For a=2,b=−1,c=0u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅0​​
u1,2​=2⋅2−(−1)±(−1)2−4⋅2⋅0​​
(−1)2−4⋅2⋅0​=1
(−1)2−4⋅2⋅0​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅2⋅0=0
4⋅2⋅0
Apply rule 0⋅a=0=0
=1−0​
Subtract the numbers: 1−0=1=1​
Apply rule 1​=1=1
u1,2​=2⋅2−(−1)±1​
Separate the solutionsu1​=2⋅2−(−1)+1​,u2​=2⋅2−(−1)−1​
u=2⋅2−(−1)+1​:21​
2⋅2−(−1)+1​
Apply rule −(−a)=a=2⋅21+1​
Add the numbers: 1+1=2=2⋅22​
Multiply the numbers: 2⋅2=4=42​
Cancel the common factor: 2=21​
u=2⋅2−(−1)−1​:0
2⋅2−(−1)−1​
Apply rule −(−a)=a=2⋅21−1​
Subtract the numbers: 1−1=0=2⋅20​
Multiply the numbers: 2⋅2=4=40​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:u=21​,u=0
Combine the intervals(u=0oru=21​)and(u≥−21​)
Merge Overlapping Intervals
u=0oru=21​andu≥−21​
The intersection of two intervals is the set of numbers which are in both intervals
u=0oru=21​andu≥−21​
u=0oru=21​
u=0oru=21​
Combine Solutions:(u=−23​oru=−1)or(u=0oru=21​)
(u=−23​oru=−1)or(u=0oru=21​)
u=−23​oru=−1oru=0oru=21​
Substitute back u=sin(x)sin(x)=−23​orsin(x)=−1orsin(x)=0orsin(x)=21​
sin(x)=−23​orsin(x)=−1orsin(x)=0orsin(x)=21​
sin(x)=−23​:No Solution
sin(x)=−23​
−1≤sin(x)≤1NoSolution
sin(x)=−1:x=23π​+2πn
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Combine all the solutionsx=23π​+2πn,x=2πn,x=π+2πn,x=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)=-1/3sin(x)=−31​5cot(x)+5=05cot(x)+5=0tan(x)+1=2tan(x)+1=2cot(x)sec(x)+cot(x)=0cot(x)sec(x)+cot(x)=0sin(2x)=(-sqrt(3))/2sin(2x)=2−3​​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024