domain of f(x)= 1/2 ln(10x+5)
|
domain\:f(x)=\frac{1}{2}\ln(10x+5)
|
domain of (x+5)/(x^2-3x+5)
|
domain\:\frac{x+5}{x^{2}-3x+5}
|
domain of f(x)=sqrt(x^2-6x+5)
|
domain\:f(x)=\sqrt{x^{2}-6x+5}
|
domain of f(x)=-4.3
|
domain\:f(x)=-4.3
|
domain of f(x)=4sin^2(x),-pi<= x<= pi
|
domain\:f(x)=4\sin^{2}(x),-π\le\:x\le\:π
|
domain of f(t)=(5t^2-64)/(3t+17)
|
domain\:f(t)=\frac{5t^{2}-64}{3t+17}
|
domain of f(x)=((x^2+1)(x+1))/(x-1)
|
domain\:f(x)=\frac{(x^{2}+1)(x+1)}{x-1}
|
domain of f(x)=(x^2+4x+4)/(2x)
|
domain\:f(x)=\frac{x^{2}+4x+4}{2x}
|
domain of f(x)=(4+x)/(2-x)
|
domain\:f(x)=\frac{4+x}{2-x}
|
domain of x/(-4x+7)
|
domain\:\frac{x}{-4x+7}
|
domain of f(x)= 1/(5x-15)
|
domain\:f(x)=\frac{1}{5x-15}
|
domain of f(x)=sqrt(6)x-x^2
|
domain\:f(x)=\sqrt{6}x-x^{2}
|
domain of f(x)=(2x-3)^2
|
domain\:f(x)=(2x-3)^{2}
|
domain of f(x)=((x-2))/(x^2-3x+2)
|
domain\:f(x)=\frac{(x-2)}{x^{2}-3x+2}
|
domain of ln(2x^2-1)
|
domain\:\ln(2x^{2}-1)
|
domain of f(x)=(3x+1)/(2x-1)
|
domain\:f(x)=\frac{3x+1}{2x-1}
|
domain of f(x)=2x^2-6x-8
|
domain\:f(x)=2x^{2}-6x-8
|
domain of f(x)= x/(sqrt(x-9))
|
domain\:f(x)=\frac{x}{\sqrt{x-9}}
|
domain of (x-4)/(x^3-5x^2+12x-33)
|
domain\:\frac{x-4}{x^{3}-5x^{2}+12x-33}
|
domain of 2-3a
|
domain\:2-3a
|
domain of y=xsqrt(2-x^2)
|
domain\:y=x\sqrt{2-x^{2}}
|
FUNCTION_MANY#extreme f(x,y)=x^2+y^2
|
FUNCTION_MANY#extreme\:f(x,y)=x^{2}+y^{2}
|
extreme f(x,y)=sqrt(4-x^2-y^2)
|
extreme\:f(x,y)=\sqrt{4-x^{2}-y^{2}}
|
extreme f(x)=x^2+y^2
|
extreme\:f(x)=x^{2}+y^{2}
|
extreme f(x,y)=xy
|
extreme\:f(x,y)=xy
|
extreme f(x,y)=sqrt(9-x^2-y^2)
|
extreme\:f(x,y)=\sqrt{9-x^{2}-y^{2}}
|
extreme f(x,y)=ln(9-x^2-9y^2)
|
extreme\:f(x,y)=\ln(9-x^{2}-9y^{2})
|
extreme f(x)=2x^2-x^4
|
extreme\:f(x)=2x^{2}-x^{4}
|
extreme f(x,y)=x^2-y^2
|
extreme\:f(x,y)=x^{2}-y^{2}
|
extreme f(x,y)=x+y
|
extreme\:f(x,y)=x+y
|
extreme f(x,y)=x^2+2y^2x^2+y^2=1
|
extreme\:f(x,y)=x^{2}+2y^{2}x^{2}+y^{2}=1
|
extreme f(x,y)=e^{xy}
|
extreme\:f(x,y)=e^{xy}
|
extreme f(x,y)=x^3+y^3-3xy
|
extreme\:f(x,y)=x^{3}+y^{3}-3xy
|
extreme f(x,y)=sqrt(xy)
|
extreme\:f(x,y)=\sqrt{xy}
|
extreme f(x,y)=4xy-x^4-2y^2+2
|
extreme\:f(x,y)=4xy-x^{4}-2y^{2}+2
|
extreme f(x)=2x^3-3x^2-12x+1
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+1
|
extreme f(x,y)=sqrt(x+y)
|
extreme\:f(x,y)=\sqrt{x+y}
|
extreme f(x,y)=x^4+y^4-4xy+1
|
extreme\:f(x,y)=x^{4}+y^{4}-4xy+1
|
extreme f(x)=3x^{2/3}-2x,-1<= x<= 1
|
extreme\:f(x)=3x^{\frac{2}{3}}-2x,-1\le\:x\le\:1
|
extreme f(x,y)=sqrt(1-x^2)-sqrt(1-y^2)
|
extreme\:f(x,y)=\sqrt{1-x^{2}}-\sqrt{1-y^{2}}
|
extreme f(x)=x^3-3x^2+3x+1
|
extreme\:f(x)=x^{3}-3x^{2}+3x+1
|
extreme f(x,y)=x^2+xy^2-2y
|
extreme\:f(x,y)=x^{2}+xy^{2}-2y
|
extreme f(t)=e^{at}
|
extreme\:f(t)=e^{at}
|
extreme f(x)=x^5-5x^3-20x-2
|
extreme\:f(x)=x^{5}-5x^{3}-20x-2
|
extreme f(x,y)=ln(x-y)+x^2+y
|
extreme\:f(x,y)=\ln(x-y)+x^{2}+y
|
extreme f(x)=6x-x^2
|
extreme\:f(x)=6x-x^{2}
|
extreme f(x,y)=4xy-x^4-y^4
|
extreme\:f(x,y)=4xy-x^{4}-y^{4}
|
extreme f(x)= 1/x+ln(x)
|
extreme\:f(x)=\frac{1}{x}+\ln(x)
|
extreme f(x,y)=3x-x^2y^2+2x^3y
|
extreme\:f(x,y)=3x-x^{2}y^{2}+2x^{3}y
|
extreme f(x)=sqrt(16-4x^2-y^2)
|
extreme\:f(x)=\sqrt{16-4x^{2}-y^{2}}
|
F(m,a)=ma
|
F(m,a)=ma
|
extreme f(x)=10+12x-3x^2-2x^3
|
extreme\:f(x)=10+12x-3x^{2}-2x^{3}
|
extreme f(x,y)=6x^2-2x^3+3y^2+6xy
|
extreme\:f(x,y)=6x^{2}-2x^{3}+3y^{2}+6xy
|
extreme f(x)=x+y
|
extreme\:f(x)=x+y
|
f(m,a)=ma
|
f(m,a)=ma
|
extreme f(x,y)=xy+1/x+1/y
|
extreme\:f(x,y)=xy+\frac{1}{x}+\frac{1}{y}
|
extreme f(x,y)=sqrt(x-y)
|
extreme\:f(x,y)=\sqrt{x-y}
|
extreme f(x)=3x^4-4x^3
|
extreme\:f(x)=3x^{4}-4x^{3}
|
extreme g(x,y)=sqrt(9-x^2-y^2)
|
extreme\:g(x,y)=\sqrt{9-x^{2}-y^{2}}
|
extreme f(x,y)=ln(x^2+y^2-4)
|
extreme\:f(x,y)=\ln(x^{2}+y^{2}-4)
|
extreme f(x,y)=ln(x+y)
|
extreme\:f(x,y)=\ln(x+y)
|
extreme f(x)=-(x+4)^3
|
extreme\:f(x)=-(x+4)^{3}
|
extreme f(x,y)=sqrt(4-x^2-4y^2)
|
extreme\:f(x,y)=\sqrt{4-x^{2}-4y^{2}}
|
extreme f(x,y)=ln(1-x^2-y^2)
|
extreme\:f(x,y)=\ln(1-x^{2}-y^{2})
|
extreme f(x)=(x-5)^2
|
extreme\:f(x)=(x-5)^{2}
|
extreme f(x,y)=ln(x+y-1)
|
extreme\:f(x,y)=\ln(x+y-1)
|
extreme f(x,y)=2x-3y+6
|
extreme\:f(x,y)=2x-3y+6
|
extreme f(x,y)=ln(4-x-y)
|
extreme\:f(x,y)=\ln(4-x-y)
|
extreme f(x)=-3x^5+5x^3
|
extreme\:f(x)=-3x^{5}+5x^{3}
|
extreme f(x)=xsqrt(9-x^2)
|
extreme\:f(x)=x\sqrt{9-x^{2}}
|
extreme f(x,y)=sqrt(y-x)
|
extreme\:f(x,y)=\sqrt{y-x}
|
extreme f(x)=2x^3+3x^2+12x-4
|
extreme\:f(x)=2x^{3}+3x^{2}+12x-4
|
extreme f(x,y)=x^3+y^3-3x^2-3y^2-9x
|
extreme\:f(x,y)=x^{3}+y^{3}-3x^{2}-3y^{2}-9x
|
extreme f(x)=2cos(x)+sin(2x)
|
extreme\:f(x)=2\cos(x)+\sin(2x)
|
extreme f(x,y)=2x^4+y^2-x^2-2y
|
extreme\:f(x,y)=2x^{4}+y^{2}-x^{2}-2y
|
extreme f(x,y)=xln(y^2-x)
|
extreme\:f(x,y)=x\ln(y^{2}-x)
|
extreme f(x)=x^3-3x^2+3x
|
extreme\:f(x)=x^{3}-3x^{2}+3x
|
extreme f(x,y)=x^2+xy+3x+2y+5
|
extreme\:f(x,y)=x^{2}+xy+3x+2y+5
|
extreme f(x)=xy
|
extreme\:f(x)=xy
|
extreme f(x,y)=ln(xy-6)
|
extreme\:f(x,y)=\ln(xy-6)
|
extreme f(x)=2x^3-3x^2
|
extreme\:f(x)=2x^{3}-3x^{2}
|
extreme f(x,y)= 1/(sqrt(16-x^2-y^2))
|
extreme\:f(x,y)=\frac{1}{\sqrt{16-x^{2}-y^{2}}}
|
extreme f(x,y)=sqrt(25-x^2-y^2)
|
extreme\:f(x,y)=\sqrt{25-x^{2}-y^{2}}
|
extreme f(x,y)=x^2+xy+y^2+3x-3y+4
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+3x-3y+4
|
extreme f(x)=(x^2-1)^2
|
extreme\:f(x)=(x^{2}-1)^{2}
|
extreme f(x,y)=y^3+3x^2y-6x^2-6y^2+2
|
extreme\:f(x,y)=y^{3}+3x^{2}y-6x^{2}-6y^{2}+2
|
extreme f(x)=-4x^3+3x^2+18x
|
extreme\:f(x)=-4x^{3}+3x^{2}+18x
|
extreme f(x,y)=2x^2-8x+y^2+16y+100
|
extreme\:f(x,y)=2x^{2}-8x+y^{2}+16y+100
|
extreme f(x,y)=(y^2)/(y+x^2)
|
extreme\:f(x,y)=\frac{y^{2}}{y+x^{2}}
|
extreme f(x)=x^{2/3}
|
extreme\:f(x)=x^{\frac{2}{3}}
|
extreme f(x,y)=9-2x+4y-x^2-4y^2
|
extreme\:f(x,y)=9-2x+4y-x^{2}-4y^{2}
|
extreme f(x,y)=sqrt(36-9x^2-4y^2)
|
extreme\:f(x,y)=\sqrt{36-9x^{2}-4y^{2}}
|
extreme f(x)=-x^3+2x^2
|
extreme\:f(x)=-x^{3}+2x^{2}
|
extreme f(x,y)=x^y
|
extreme\:f(x,y)=x^{y}
|
extreme f(x)=4x^3-39x^2+90x+2
|
extreme\:f(x)=4x^{3}-39x^{2}+90x+2
|
FUNCTION_MANY#extreme f(x,y)=x^2+y^2+x^2y+4
|
FUNCTION_MANY#extreme\:f(x,y)=x^{2}+y^{2}+x^{2}y+4
|
extreme f(x,y)=2xy+2x-x^2-2y^2
|
extreme\:f(x,y)=2xy+2x-x^{2}-2y^{2}
|
extreme f(x)=cos(3x)
|
extreme\:f(x)=\cos(3x)
|
extreme f(x,y)= 1/(1-x^2-y^2)
|
extreme\:f(x,y)=\frac{1}{1-x^{2}-y^{2}}
|
extreme f(x,y)=14x^2-2x^3+2y^2+4xy
|
extreme\:f(x,y)=14x^{2}-2x^{3}+2y^{2}+4xy
|