Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(y)=2^x
inverse\:f(y)=2^{x}
inverse of f(x)=(x+2)/(1-x)
inverse\:f(x)=\frac{x+2}{1-x}
range of \sqrt[3]{x+2}
range\:\sqrt[3]{x+2}
line 4x-y=9
line\:4x-y=9
asymptotes of (x^2)/(x-7)
asymptotes\:\frac{x^{2}}{x-7}
asymptotes of f(x)=(x^3+1)/(x^3+x)
asymptotes\:f(x)=\frac{x^{3}+1}{x^{3}+x}
domain of (-1)/(3x)
domain\:\frac{-1}{3x}
range of f(x)=(3x^2)/(2x^2-32)
range\:f(x)=\frac{3x^{2}}{2x^{2}-32}
inverse of f(x)=((4x-8))/((x+6))
inverse\:f(x)=\frac{(4x-8)}{(x+6)}
parity (dy)/y
parity\:\frac{dy}{y}
domain of f(x)= 1/(2x^2+3)
domain\:f(x)=\frac{1}{2x^{2}+3}
parallel y=4x+5
parallel\:y=4x+5
parity f(x)=5
parity\:f(x)=5
critical 9x+7/x
critical\:9x+\frac{7}{x}
domain of f(x)=(x+2)/(x^2+7x+10)
domain\:f(x)=\frac{x+2}{x^{2}+7x+10}
domain of x/4+17/4
domain\:\frac{x}{4}+\frac{17}{4}
domain of y=4x^2-x+17
domain\:y=4x^{2}-x+17
inverse of-x^2-4,x<= 0
inverse\:-x^{2}-4,x\le\:0
asymptotes of f(x)=8x-3x^2
asymptotes\:f(x)=8x-3x^{2}
monotone f(x)=x+1/x
monotone\:f(x)=x+\frac{1}{x}
asymptotes of (5x^3+6x^2+2x+4)/(x^2+3)
asymptotes\:\frac{5x^{3}+6x^{2}+2x+4}{x^{2}+3}
domain of 4^x
domain\:4^{x}
range of sqrt(8x+3)
range\:\sqrt{8x+3}
domain of (x-1)/x
domain\:\frac{x-1}{x}
domain of f(x)=3x^{62}f(x)=-x
domain\:f(x)=3x^{62}f(x)=-x
domain of f(x)=arccos(x/5)
domain\:f(x)=\arccos(\frac{x}{5})
domain of f(x)= 4/x-2
domain\:f(x)=\frac{4}{x}-2
line m= 3/2 ,(-2,0)
line\:m=\frac{3}{2},(-2,0)
domain of f(x)= 3/5 x^3-10,x=4
domain\:f(x)=\frac{3}{5}x^{3}-10,x=4
range of 1/(sqrt(x+2))
range\:\frac{1}{\sqrt{x+2}}
inverse of f(x)=5log_{4}(x)
inverse\:f(x)=5\log_{4}(x)
slope of 2y=-x+6
slope\:2y=-x+6
parity 2Rntan(pi/n)
parity\:2Rn\tan(\frac{π}{n})
domain of sqrt(x^2+4)
domain\:\sqrt{x^{2}+4}
range of sqrt(x+1)-2
range\:\sqrt{x+1}-2
domain of f(x)=arctan(1+1/x)
domain\:f(x)=\arctan(1+\frac{1}{x})
domain of f(x)=6x+24
domain\:f(x)=6x+24
inverse of f(x)= 1/(sqrt(x^2+1))
inverse\:f(x)=\frac{1}{\sqrt{x^{2}+1}}
domain of h(x)= 4/(x-5)
domain\:h(x)=\frac{4}{x-5}
parallel y=4x+2,(-8,5)
parallel\:y=4x+2,(-8,5)
critical sin^2(16x)
critical\:\sin^{2}(16x)
inflection (x^2-2x-2)/(x-3)
inflection\:\frac{x^{2}-2x-2}{x-3}
slope of 2x+5y=8
slope\:2x+5y=8
range of f(x)=140*1.6^x
range\:f(x)=140\cdot\:1.6^{x}
y=cos(2x)
y=\cos(2x)
slope ofintercept-4x+2y=20
slopeintercept\:-4x+2y=20
inverse of f(x)=4x^2-3
inverse\:f(x)=4x^{2}-3
asymptotes of f(x)= 3/(x-2)
asymptotes\:f(x)=\frac{3}{x-2}
monotone f(x)=3e^{x^2-4x}
monotone\:f(x)=3e^{x^{2}-4x}
domain of f(x)=2+sqrt(x-1)
domain\:f(x)=2+\sqrt{x-1}
domain of x/(x^2+1)
domain\:\frac{x}{x^{2}+1}
parity f(x)=|x-3|
parity\:f(x)=\left|x-3\right|
line (-6,0),(0,-1)
line\:(-6,0),(0,-1)
domain of-3(a-1)
domain\:-3(a-1)
inverse of f(x)=\sqrt[3]{(y+4)^2}
inverse\:f(x)=\sqrt[3]{(y+4)^{2}}
slope of 4x+2y=6
slope\:4x+2y=6
inverse of f(x)=5x^3
inverse\:f(x)=5x^{3}
extreme f(x)=3x^3-9x
extreme\:f(x)=3x^{3}-9x
inverse of f(x)=((5-3x))/2
inverse\:f(x)=\frac{(5-3x)}{2}
inverse of f(x)=8+sqrt(4+x)
inverse\:f(x)=8+\sqrt{4+x}
intercepts of f(x)=10x-7y+11=0
intercepts\:f(x)=10x-7y+11=0
inverse of f(x)=1+1/x
inverse\:f(x)=1+\frac{1}{x}
amplitude of 2sin((2piθ)/5)
amplitude\:2\sin(\frac{2πθ}{5})
domain of f(x)=(x-2)/(x^2+4)
domain\:f(x)=\frac{x-2}{x^{2}+4}
inverse of f(x)= 4/(x-3)
inverse\:f(x)=\frac{4}{x-3}
inverse of 1/(x+4)-2
inverse\:\frac{1}{x+4}-2
slope ofintercept 12x+5y=-13
slopeintercept\:12x+5y=-13
extreme (x^2+2x-3)/(x-2)
extreme\:\frac{x^{2}+2x-3}{x-2}
domain of h(x)=(2x)/(1+x)
domain\:h(x)=\frac{2x}{1+x}
inflection 2sin(x)+sin(2x)
inflection\:2\sin(x)+\sin(2x)
asymptotes of (x^2+7x+12)/(-2x^2-2x+12)
asymptotes\:\frac{x^{2}+7x+12}{-2x^{2}-2x+12}
inverse of f(x)=log_{6}(4x+4)
inverse\:f(x)=\log_{6}(4x+4)
domain of-8x^2+4
domain\:-8x^{2}+4
extreme f(x)=-2x^2+4x-7
extreme\:f(x)=-2x^{2}+4x-7
range of 1/(5+e^{3x)}
range\:\frac{1}{5+e^{3x}}
inverse of f(x)=9x+13
inverse\:f(x)=9x+13
inverse of f(x)=-1/2 x-2
inverse\:f(x)=-\frac{1}{2}x-2
asymptotes of f(x)=(8x^2+1)/(4x^2+2x-6)
asymptotes\:f(x)=\frac{8x^{2}+1}{4x^{2}+2x-6}
inverse of f(x)=-x/5+3
inverse\:f(x)=-\frac{x}{5}+3
asymptotes of f(x)= 4/(x+2)
asymptotes\:f(x)=\frac{4}{x+2}
inverse of 5x+4
inverse\:5x+4
domain of y=x(sqrt(x)-5)
domain\:y=x(\sqrt{x}-5)
extreme f(x)=-x^3-9x^2-27x-8
extreme\:f(x)=-x^{3}-9x^{2}-27x-8
periodicity of-cos(3(θ-pi/6))
periodicity\:-\cos(3(θ-\frac{π}{6}))
critical f(x)=x^2-10x
critical\:f(x)=x^{2}-10x
intercepts of f(x)=2x^3+12x^2+16x
intercepts\:f(x)=2x^{3}+12x^{2}+16x
intercepts of (x^2)/(x^2+16)
intercepts\:\frac{x^{2}}{x^{2}+16}
inverse of 9-2x^2
inverse\:9-2x^{2}
domain of f(x)=b
domain\:f(x)=b
asymptotes of f(x)=(6x)/(2+x)
asymptotes\:f(x)=\frac{6x}{2+x}
asymptotes of f(x)=(x-5)/(x^2-4x-12)
asymptotes\:f(x)=\frac{x-5}{x^{2}-4x-12}
domain of 1/(2x^2-x-6)
domain\:\frac{1}{2x^{2}-x-6}
symmetry 9-(x-4)^2
symmetry\:9-(x-4)^{2}
asymptotes of f(x)=(3x^2+12x)/(x^2+5x+4)
asymptotes\:f(x)=\frac{3x^{2}+12x}{x^{2}+5x+4}
asymptotes of f(x)= 4/(x^2-3x)
asymptotes\:f(x)=\frac{4}{x^{2}-3x}
inverse of y=((x+2))/3
inverse\:y=\frac{(x+2)}{3}
domain of f(x)= 1/4
domain\:f(x)=\frac{1}{4}
midpoint (5,4),(5,-5)
midpoint\:(5,4),(5,-5)
domain of f(x)= x/(sqrt(x^2)-3*x-4)
domain\:f(x)=\frac{x}{\sqrt{x^{2}}-3\cdot\:x-4}
range of-(1/3)^x
range\:-(\frac{1}{3})^{x}
1
..
129
130
131
132
133
..
839