Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=3-(12)/(x+2)
inverse\:f(x)=3-\frac{12}{x+2}
inflection 3x^4-28x^3+60x^2
inflection\:3x^{4}-28x^{3}+60x^{2}
inverse of y=2^{x-1}
inverse\:y=2^{x-1}
domain of x/(|x-2|)
domain\:\frac{x}{\left|x-2\right|}
inverse of f(x)=((x-1))/((x-2))
inverse\:f(x)=\frac{(x-1)}{(x-2)}
vertices y=16x^2-24x+9
vertices\:y=16x^{2}-24x+9
distance (-4,0),(5,9)
distance\:(-4,0),(5,9)
symmetry x^2-8x+15
symmetry\:x^{2}-8x+15
domain of f(x)=-x^2+5x-4
domain\:f(x)=-x^{2}+5x-4
simplify (-5.9)(8.14)
simplify\:(-5.9)(8.14)
distance (4,-1),(-1,1)
distance\:(4,-1),(-1,1)
inverse of f(x)= 3/7 x-24
inverse\:f(x)=\frac{3}{7}x-24
extreme e^{3x}(2-x)
extreme\:e^{3x}(2-x)
parity e^x
parity\:e^{x}
domain of f(x)=(5x)/(2x-1)
domain\:f(x)=\frac{5x}{2x-1}
intercepts of (2x+1)/(2x-1)
intercepts\:\frac{2x+1}{2x-1}
range of f(x)=(2x)/(x-1)
range\:f(x)=\frac{2x}{x-1}
extreme f(x)=x-e^x
extreme\:f(x)=x-e^{x}
domain of f(x)=7x^3-14x^2
domain\:f(x)=7x^{3}-14x^{2}
inverse of f(x)=((2x+2))/((4x+3))
inverse\:f(x)=\frac{(2x+2)}{(4x+3)}
inverse of f(x)=1-4x
inverse\:f(x)=1-4x
inverse of f(x)= 2/3 x^3
inverse\:f(x)=\frac{2}{3}x^{3}
intercepts of f(x)=-8x^2-9x^4-5+7x^3+3x
intercepts\:f(x)=-8x^{2}-9x^{4}-5+7x^{3}+3x
slope ofintercept 5x-2y=6
slopeintercept\:5x-2y=6
inverse of f(x)=(8x-4)/(2x+6)
inverse\:f(x)=\frac{8x-4}{2x+6}
intercepts of f(x)=-2x^2-12x-10
intercepts\:f(x)=-2x^{2}-12x-10
domain of 2/(x-4)
domain\:\frac{2}{x-4}
domain of f(x)=-4sqrt(x+2)
domain\:f(x)=-4\sqrt{x+2}
critical f(x)=x^4+4x^3-8x^2+1
critical\:f(x)=x^{4}+4x^{3}-8x^{2}+1
extreme f(x)=x^4-4x^3+2
extreme\:f(x)=x^{4}-4x^{3}+2
domain of ln(1/(x-1)+1)
domain\:\ln(\frac{1}{x-1}+1)
inverse of f(x)=(x+5)/(x-8)
inverse\:f(x)=\frac{x+5}{x-8}
simplify (70.3)(90.2)
simplify\:(70.3)(90.2)
critical (x-1)/(x^2)
critical\:\frac{x-1}{x^{2}}
distance (0,0),(4,3)
distance\:(0,0),(4,3)
shift tan(x)
shift\:\tan(x)
parity sec^2(x)*2x
parity\:\sec^{2}(x)\cdot\:2x
inflection 6x-ln(6x)
inflection\:6x-\ln(6x)
domain of f(x)=2x+x^3
domain\:f(x)=2x+x^{3}
line (0,2),(4,6)
line\:(0,2),(4,6)
inverse of log_{2}(x)+3
inverse\:\log_{2}(x)+3
symmetry 12y^2-4x^2+16x+72y+44=0
symmetry\:12y^{2}-4x^{2}+16x+72y+44=0
symmetry y=-(x-7)^2+4
symmetry\:y=-(x-7)^{2}+4
asymptotes of f(x)= 1/(x-2)-3
asymptotes\:f(x)=\frac{1}{x-2}-3
domain of f(x)=sqrt(5x+45)
domain\:f(x)=\sqrt{5x+45}
inverse of f(x)=1-1/x
inverse\:f(x)=1-\frac{1}{x}
line (5,123),(10,248)
line\:(5,123),(10,248)
asymptotes of f(x)=x+(10)/x
asymptotes\:f(x)=x+\frac{10}{x}
midpoint (0,-2),(4,4)
midpoint\:(0,-2),(4,4)
domain of f(x)=|2x-8|
domain\:f(x)=\left|2x-8\right|
distance (2,2),(1,-3)
distance\:(2,2),(1,-3)
inverse of f(x)=(4x)/(x-6)
inverse\:f(x)=\frac{4x}{x-6}
domain of 3/(x-4)
domain\:\frac{3}{x-4}
parallel y=4x+6,(-3,3)
parallel\:y=4x+6,(-3,3)
amplitude of-2sin(2pix)
amplitude\:-2\sin(2πx)
domain of f(x)=xln(1/x)
domain\:f(x)=x\ln(\frac{1}{x})
distance (-4,-3),(-6,-8)
distance\:(-4,-3),(-6,-8)
asymptotes of f(x)=x^2-5x-24
asymptotes\:f(x)=x^{2}-5x-24
perpendicular y= 3/2 x-3/2 ,(-3,8)
perpendicular\:y=\frac{3}{2}x-\frac{3}{2},(-3,8)
range of f(x)=sqrt(x-9)+4
range\:f(x)=\sqrt{x-9}+4
slope ofintercept 3x+y=14
slopeintercept\:3x+y=14
shift 1.5cos((pi(x-3))/(26))+6.5
shift\:1.5\cos(\frac{π(x-3)}{26})+6.5
inverse of f(x)=(x+7)^3+2
inverse\:f(x)=(x+7)^{3}+2
parity f(x)=x^2+1
parity\:f(x)=x^{2}+1
domain of f(x)=sqrt(5x-10)
domain\:f(x)=\sqrt{5x-10}
inverse of f(x)=0.04(x-2500)+1500
inverse\:f(x)=0.04(x-2500)+1500
domain of 2-x
domain\:2-x
periodicity of f(x)=cos((14pi)/3)
periodicity\:f(x)=\cos(\frac{14π}{3})
slope ofintercept 4x+2y=18
slopeintercept\:4x+2y=18
domain of f(x)=2x-5
domain\:f(x)=2x-5
inverse of 1-ln(x-2)
inverse\:1-\ln(x-2)
line (0,1),(3,5)
line\:(0,1),(3,5)
line x=1-2t
line\:x=1-2t
domain of y=sqrt(x^2-9)
domain\:y=\sqrt{x^{2}-9}
inverse of f(x)=-x^2+4x+1
inverse\:f(x)=-x^{2}+4x+1
inverse of ln(5x)
inverse\:\ln(5x)
inverse of f(x)=-4x-1
inverse\:f(x)=-4x-1
inverse of 4-7x
inverse\:4-7x
range of f(x)=sqrt(x+6)
range\:f(x)=\sqrt{x+6}
asymptotes of f(x)=(x^2+4x+3)/(x+1)
asymptotes\:f(x)=\frac{x^{2}+4x+3}{x+1}
y=-x+1
y=-x+1
domain of (1-x-x^2)/(2x-7)
domain\:\frac{1-x-x^{2}}{2x-7}
periodicity of 6sin(t+4)
periodicity\:6\sin(t+4)
range of-2x^2+8x-5
range\:-2x^{2}+8x-5
inflection (x-2)/(sqrt(x^2+1))
inflection\:\frac{x-2}{\sqrt{x^{2}+1}}
domain of f(x)=sqrt(6x-30)
domain\:f(x)=\sqrt{6x-30}
domain of 2sqrt(x)+1
domain\:2\sqrt{x}+1
inverse of f(x)=(x+2)^5+2
inverse\:f(x)=(x+2)^{5}+2
periodicity of f(x)=cos((8pi)/(31))
periodicity\:f(x)=\cos(\frac{8π}{31})
domain of x^2+10x+25
domain\:x^{2}+10x+25
domain of sqrt(x+5)-7
domain\:\sqrt{x+5}-7
range of 3x+7
range\:3x+7
domain of f(x)=(5x)/(27-x^3)
domain\:f(x)=\frac{5x}{27-x^{3}}
range of f(x)=4x^2+5x-1
range\:f(x)=4x^{2}+5x-1
critical f(x)=t^4-24t^3+154t^2
critical\:f(x)=t^{4}-24t^{3}+154t^{2}
inverse of 7/(x^2+1)
inverse\:\frac{7}{x^{2}+1}
intercepts of f(x)=(4x+9)/(3x-6)
intercepts\:f(x)=\frac{4x+9}{3x-6}
intercepts of y=x+7
intercepts\:y=x+7
inverse of f(x)=e^{(sqrt(x))/3}
inverse\:f(x)=e^{\frac{\sqrt{x}}{3}}
extreme f(x)=2x^3+3x^2-12x+1
extreme\:f(x)=2x^{3}+3x^{2}-12x+1
1
..
121
122
123
124
125
..
839