Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=x^2-1,x<= 0
inverse\:f(x)=x^{2}-1,x\le\:0
asymptotes of f(x)=-2/3 csc(2x)
asymptotes\:f(x)=-\frac{2}{3}\csc(2x)
domain of f(x)=sqrt(1/x+1)
domain\:f(x)=\sqrt{\frac{1}{x}+1}
symmetry 3x^2-2
symmetry\:3x^{2}-2
asymptotes of f(x)= 1/(x-3)+4
asymptotes\:f(x)=\frac{1}{x-3}+4
domain of f(x)=-10sqrt(6-11x)+10
domain\:f(x)=-10\sqrt{6-11x}+10
asymptotes of f(x)=2
asymptotes\:f(x)=2
critical f(x)=-6sin(-x+pi/2)
critical\:f(x)=-6\sin(-x+\frac{π}{2})
inverse of 3x^2+2x
inverse\:3x^{2}+2x
range of f(x)=-4^x
range\:f(x)=-4^{x}
range of \sqrt[3]{x-8}
range\:\sqrt[3]{x-8}
asymptotes of f(x)= 1/(x-3)+2
asymptotes\:f(x)=\frac{1}{x-3}+2
range of f(x)=x^2-25,x>= 5
range\:f(x)=x^{2}-25,x\ge\:5
domain of (x-8)^2
domain\:(x-8)^{2}
inverse of f(x)= 1/(x+1)
inverse\:f(x)=\frac{1}{x+1}
shift 3cos(5x-9)
shift\:3\cos(5x-9)
range of x^2+4x+7
range\:x^{2}+4x+7
periodicity of 3cot(2pix)
periodicity\:3\cot(2πx)
inflection 2x^3-9x^2-24x+30
inflection\:2x^{3}-9x^{2}-24x+30
inverse of f(x)=sqrt(2-x/(x-2))
inverse\:f(x)=\sqrt{2-\frac{x}{x-2}}
domain of 8x^2
domain\:8x^{2}
parity f(x)=x^2+10
parity\:f(x)=x^{2}+10
inverse of y/(y+2)
inverse\:\frac{y}{y+2}
inverse of x^2+3x-4
inverse\:x^{2}+3x-4
domain of x^4-x^2
domain\:x^{4}-x^{2}
symmetry x^2+x+2
symmetry\:x^{2}+x+2
intercepts of f(x)=-8sin(10x-pi/4)
intercepts\:f(x)=-8\sin(10x-\frac{π}{4})
inverse of f(x)=x^2-6x+9
inverse\:f(x)=x^{2}-6x+9
inverse of f(x)= 1/x+1/(x^2)
inverse\:f(x)=\frac{1}{x}+\frac{1}{x^{2}}
inverse of f(x)=ln(x+6)
inverse\:f(x)=\ln(x+6)
domain of (2x)/(x^2+1)
domain\:\frac{2x}{x^{2}+1}
asymptotes of f(x)=(x^3)/(81-x^2)
asymptotes\:f(x)=\frac{x^{3}}{81-x^{2}}
domain of 1+x^2
domain\:1+x^{2}
line (2,-3),(4,5)
line\:(2,-3),(4,5)
f(x)=cos(x)sin(x)
f(x)=\cos(x)\sin(x)
extreme f(x)=x^3-6x^2+9x
extreme\:f(x)=x^{3}-6x^{2}+9x
domain of 1/(x^{3/2)+3x}
domain\:\frac{1}{x^{\frac{3}{2}}+3x}
amplitude of tan(x)-4
amplitude\:\tan(x)-4
range of sin(t)-(cos(t)+sin(t))
range\:\sin(t)-(\cos(t)+\sin(t))
extreme 3cos(4x)
extreme\:3\cos(4x)
critical f(x)=(2x-14)^4
critical\:f(x)=(2x-14)^{4}
domain of f(x)=(x-2)^3+3
domain\:f(x)=(x-2)^{3}+3
symmetry-(x-1)^2+4
symmetry\:-(x-1)^{2}+4
extreme f(x)=2xsqrt(4-x^2)
extreme\:f(x)=2x\sqrt{4-x^{2}}
monotone f(x)=9x^2-x^3-3
monotone\:f(x)=9x^{2}-x^{3}-3
f(x)=-sqrt(x)
f(x)=-\sqrt{x}
inverse of y= 1/(x+5)
inverse\:y=\frac{1}{x+5}
slope ofintercept 9x-7y=-7
slopeintercept\:9x-7y=-7
parity sqrt(x^4-32x^3+290x^2-800x+6625)
parity\:\sqrt{x^{4}-32x^{3}+290x^{2}-800x+6625}
asymptotes of f(x)=(x^2+1)/(x^2-1)
asymptotes\:f(x)=\frac{x^{2}+1}{x^{2}-1}
asymptotes of f(x)=((x^3+1))/(x^2-1)
asymptotes\:f(x)=\frac{(x^{3}+1)}{x^{2}-1}
domain of f(x)= 1/2 x-1/3
domain\:f(x)=\frac{1}{2}x-\frac{1}{3}
asymptotes of f(x)=(4x)/7
asymptotes\:f(x)=\frac{4x}{7}
inverse of f(x)=(9-x)/(x-7)
inverse\:f(x)=\frac{9-x}{x-7}
asymptotes of f(x)= 4/(x^2-4)
asymptotes\:f(x)=\frac{4}{x^{2}-4}
domain of (x^3)/(x^3+1)
domain\:\frac{x^{3}}{x^{3}+1}
domain of f(x)=sqrt(x-2)+\sqrt[3]{x-3}
domain\:f(x)=\sqrt{x-2}+\sqrt[3]{x-3}
domain of f(x)=(2x)/(x+9)
domain\:f(x)=\frac{2x}{x+9}
shift 3sin(2x-pi)
shift\:3\sin(2x-π)
slope ofintercept 2x+y=-9
slopeintercept\:2x+y=-9
slope ofintercept y=4x+5
slopeintercept\:y=4x+5
distance (5,-2),(6,4)
distance\:(5,-2),(6,4)
extreme f(x)=3-4x+x^2
extreme\:f(x)=3-4x+x^{2}
range of f(x)=0.5^x
range\:f(x)=0.5^{x}
inverse of f(t)=4+7t
inverse\:f(t)=4+7t
line (1,2),(3,4)
line\:(1,2),(3,4)
intercepts of log_{4}(x-1)+1
intercepts\:\log_{4}(x-1)+1
domain of f(x)= x/(sqrt(x^2-9))
domain\:f(x)=\frac{x}{\sqrt{x^{2}-9}}
domain of f(x)=(x-2)/(2x-4)
domain\:f(x)=\frac{x-2}{2x-4}
asymptotes of f(x)=(2x)/(x+7)
asymptotes\:f(x)=\frac{2x}{x+7}
inverse of f(x)=sqrt(x^2-4)
inverse\:f(x)=\sqrt{x^{2}-4}
domain of sqrt(4-x^2)-sqrt(x+1)
domain\:\sqrt{4-x^{2}}-\sqrt{x+1}
asymptotes of (2x^2+x-15)/(5x^2-28x+15)
asymptotes\:\frac{2x^{2}+x-15}{5x^{2}-28x+15}
slope ofintercept 2x-5y=10
slopeintercept\:2x-5y=10
range of f(x)=3^{x-1}
range\:f(x)=3^{x-1}
domain of f(x)=sqrt(x^2-1)+1
domain\:f(x)=\sqrt{x^{2}-1}+1
asymptotes of f(x)=((2x^2-3x+3))/(1-2x)
asymptotes\:f(x)=\frac{(2x^{2}-3x+3)}{1-2x}
asymptotes of f(x)=((8x^2+6)/(8x^2-6))
asymptotes\:f(x)=(\frac{8x^{2}+6}{8x^{2}-6})
domain of f(x)=1+sqrt((3-x)/(5-x))
domain\:f(x)=1+\sqrt{\frac{3-x}{5-x}}
f(x)=(x+5)/(x^2-10x+25)
f(x)=\frac{x+5}{x^{2}-10x+25}
frequency sec(x)
frequency\:\sec(x)
slope of-9
slope\:-9
intercepts of x^3-17x^2+48x-32
intercepts\:x^{3}-17x^{2}+48x-32
shift 2/3 cos(2(θ/3-pi))+1/2
shift\:\frac{2}{3}\cos(2(\frac{θ}{3}-π))+\frac{1}{2}
distance (-1, 19/2),(-9,11)
distance\:(-1,\frac{19}{2}),(-9,11)
y=3x-1
y=3x-1
extreme f(x)=-32t+40
extreme\:f(x)=-32t+40
line (12,3),(3,12)
line\:(12,3),(3,12)
intercepts of cot(x+(7pi)/(36))
intercepts\:\cot(x+\frac{7π}{36})
midpoint (-1,-3),(4,-6)
midpoint\:(-1,-3),(4,-6)
critical 1/4 x^4-1/3 x^3-x^2
critical\:\frac{1}{4}x^{4}-\frac{1}{3}x^{3}-x^{2}
domain of f(x)=-2x^2-3x+1
domain\:f(x)=-2x^{2}-3x+1
domain of f(x)=\sqrt[3]{x+6}+1
domain\:f(x)=\sqrt[3]{x+6}+1
midpoint (-10,1),(-2,-4)
midpoint\:(-10,1),(-2,-4)
critical xe^{-3x}
critical\:xe^{-3x}
inverse of f(x)= 1/4 x^3+8
inverse\:f(x)=\frac{1}{4}x^{3}+8
asymptotes of (x-2)e^x
asymptotes\:(x-2)e^{x}
inverse of f(x)= 7/(5x+7)
inverse\:f(x)=\frac{7}{5x+7}
domain of (2x^2-x-7)/(x^2+9)
domain\:\frac{2x^{2}-x-7}{x^{2}+9}
domain of log_{1/2}(-x+2)+5
domain\:\log_{\frac{1}{2}}(-x+2)+5
1
..
9
10
11
12
13
..
1324