Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)+sec(x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)+sec(x)=1

Solution

x=2πn+2π
+1
Degrees
x=360∘+360∘n
Solution steps
tan(x)+sec(x)=1
Subtract 1 from both sidestan(x)+sec(x)−1=0
Express with sin, cos
−1+sec(x)+tan(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−1+cos(x)1​+tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+cos(x)1​+cos(x)sin(x)​
Simplify −1+cos(x)1​+cos(x)sin(x)​:cos(x)−cos(x)+1+sin(x)​
−1+cos(x)1​+cos(x)sin(x)​
Combine the fractions cos(x)1​+cos(x)sin(x)​:cos(x)1+sin(x)​
Apply rule ca​±cb​=ca±b​=cos(x)1+sin(x)​
=−1+cos(x)sin(x)+1​
Convert element to fraction: 1=cos(x)1cos(x)​=−cos(x)1⋅cos(x)​+cos(x)1+sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−1⋅cos(x)+1+sin(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)−cos(x)+1+sin(x)​
=cos(x)−cos(x)+1+sin(x)​
cos(x)1−cos(x)+sin(x)​=0
g(x)f(x)​=0⇒f(x)=01−cos(x)+sin(x)=0
Rewrite using trig identities
1−cos(x)+sin(x)
sin(x)−cos(x)=2​sin(x−4π​)
sin(x)−cos(x)
Rewrite as=2​(2​1​sin(x)−2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)−sin(4π​)cos(x))
Use the Angle Sum identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=2​sin(x−4π​)
=1+2​sin(x−4π​)
1+2​sin(x−4π​)=0
Move 1to the right side
1+2​sin(x−4π​)=0
Subtract 1 from both sides1+2​sin(x−4π​)−1=0−1
Simplify2​sin(x−4π​)=−1
2​sin(x−4π​)=−1
Divide both sides by 2​
2​sin(x−4π​)=−1
Divide both sides by 2​2​2​sin(x−4π​)​=2​−1​
Simplify
2​2​sin(x−4π​)​=2​−1​
Simplify 2​2​sin(x−4π​)​:sin(x−4π​)
2​2​sin(x−4π​)​
Cancel the common factor: 2​=sin(x−4π​)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
sin(x−4π​)=−22​​
sin(x−4π​)=−22​​
sin(x−4π​)=−22​​
General solutions for sin(x−4π​)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x−4π​=45π​+2πn,x−4π​=47π​+2πn
x−4π​=45π​+2πn,x−4π​=47π​+2πn
Solve x−4π​=45π​+2πn:x=2πn+23π​
x−4π​=45π​+2πn
Move 4π​to the right side
x−4π​=45π​+2πn
Add 4π​ to both sidesx−4π​+4π​=45π​+2πn+4π​
Simplify
x−4π​+4π​=45π​+2πn+4π​
Simplify x−4π​+4π​:x
x−4π​+4π​
Add similar elements: −4π​+4π​=0
=x
Simplify 45π​+2πn+4π​:2πn+23π​
45π​+2πn+4π​
Group like terms=2πn+4π​+45π​
Combine the fractions 4π​+45π​:23π​
Apply rule ca​±cb​=ca±b​=4π+5π​
Add similar elements: π+5π=6π=46π​
Cancel the common factor: 2=23π​
=2πn+23π​
x=2πn+23π​
x=2πn+23π​
x=2πn+23π​
Solve x−4π​=47π​+2πn:x=2πn+2π
x−4π​=47π​+2πn
Move 4π​to the right side
x−4π​=47π​+2πn
Add 4π​ to both sidesx−4π​+4π​=47π​+2πn+4π​
Simplify
x−4π​+4π​=47π​+2πn+4π​
Simplify x−4π​+4π​:x
x−4π​+4π​
Add similar elements: −4π​+4π​=0
=x
Simplify 47π​+2πn+4π​:2πn+2π
47π​+2πn+4π​
Group like terms=2πn+4π​+47π​
Combine the fractions 4π​+47π​:2π
Apply rule ca​±cb​=ca±b​=4π+7π​
Add similar elements: π+7π=8π=48π​
Divide the numbers: 48​=2=2π
=2πn+2π
x=2πn+2π
x=2πn+2π
x=2πn+2π
x=2πn+23π​,x=2πn+2π
Since the equation is undefined for:2πn+23π​x=2πn+2π

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

arctan(3/4)cos^2(x)+2cos(x)=3tan(105)cos(2θ)=(sqrt(3))/2prove cos(2x)=cos^2(x)-sin^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x)+sec(x)=1 ?

    The general solution for tan(x)+sec(x)=1 is x=2pin+2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024