Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sin^4(x)+cos^4(x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sin4(x)+cos4(x)=1

Solution

x=2πn,x=π+2πn,x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.35619…+2πn,x=−2.35619…+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=45∘+360∘n,x=315∘+360∘n,x=135∘+360∘n,x=−135∘+360∘n
Solution steps
3sin4(x)+cos4(x)=1
Subtract 1 from both sides3sin4(x)+cos4(x)−1=0
Apply exponent rule: ab=a2ab−2−1+cos4(x)+3sin2(x)sin2(x)=0
Rewrite using trig identities
−1+cos4(x)+3sin2(x)sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1+cos4(x)+3(1−cos2(x))(1−cos2(x))
Simplify −1+cos4(x)+3(1−cos2(x))(1−cos2(x)):4cos4(x)−6cos2(x)+2
−1+cos4(x)+3(1−cos2(x))(1−cos2(x))
3(1−cos2(x))(1−cos2(x))=3(1−cos2(x))2
3(1−cos2(x))(1−cos2(x))
Apply exponent rule: ab⋅ac=ab+c(1−cos2(x))(1−cos2(x))=(1−cos2(x))1+1=3(1−cos2(x))1+1
Add the numbers: 1+1=2=3(1−cos2(x))2
=−1+cos4(x)+3(−cos2(x)+1)2
(1−cos2(x))2:1−2cos2(x)+cos4(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=cos2(x)
=12−2⋅1⋅cos2(x)+(cos2(x))2
Simplify 12−2⋅1⋅cos2(x)+(cos2(x))2:1−2cos2(x)+cos4(x)
12−2⋅1⋅cos2(x)+(cos2(x))2
Apply rule 1a=112=1=1−2⋅1⋅cos2(x)+(cos2(x))2
2⋅1⋅cos2(x)=2cos2(x)
2⋅1⋅cos2(x)
Multiply the numbers: 2⋅1=2=2cos2(x)
(cos2(x))2=cos4(x)
(cos2(x))2
Apply exponent rule: (ab)c=abc=cos2⋅2(x)
Multiply the numbers: 2⋅2=4=cos4(x)
=1−2cos2(x)+cos4(x)
=1−2cos2(x)+cos4(x)
=−1+cos4(x)+3(1−2cos2(x)+cos4(x))
Expand 3(1−2cos2(x)+cos4(x)):3−6cos2(x)+3cos4(x)
3(1−2cos2(x)+cos4(x))
Distribute parentheses=3⋅1+3(−2cos2(x))+3cos4(x)
Apply minus-plus rules+(−a)=−a=3⋅1−3⋅2cos2(x)+3cos4(x)
Simplify 3⋅1−3⋅2cos2(x)+3cos4(x):3−6cos2(x)+3cos4(x)
3⋅1−3⋅2cos2(x)+3cos4(x)
Multiply the numbers: 3⋅1=3=3−3⋅2cos2(x)+3cos4(x)
Multiply the numbers: 3⋅2=6=3−6cos2(x)+3cos4(x)
=3−6cos2(x)+3cos4(x)
=−1+cos4(x)+3−6cos2(x)+3cos4(x)
Simplify −1+cos4(x)+3−6cos2(x)+3cos4(x):4cos4(x)−6cos2(x)+2
−1+cos4(x)+3−6cos2(x)+3cos4(x)
Group like terms=cos4(x)−6cos2(x)+3cos4(x)−1+3
Add similar elements: cos4(x)+3cos4(x)=4cos4(x)=4cos4(x)−6cos2(x)−1+3
Add/Subtract the numbers: −1+3=2=4cos4(x)−6cos2(x)+2
=4cos4(x)−6cos2(x)+2
=4cos4(x)−6cos2(x)+2
2+4cos4(x)−6cos2(x)=0
Solve by substitution
2+4cos4(x)−6cos2(x)=0
Let: cos(x)=u2+4u4−6u2=0
2+4u4−6u2=0:u=1,u=−1,u=21​​,u=−21​​
2+4u4−6u2=0
Write in the standard form an​xn+…+a1​x+a0​=04u4−6u2+2=0
Rewrite the equation with v=u2 and v2=u44v2−6v+2=0
Solve 4v2−6v+2=0:v=1,v=21​
4v2−6v+2=0
Solve with the quadratic formula
4v2−6v+2=0
Quadratic Equation Formula:
For a=4,b=−6,c=2v1,2​=2⋅4−(−6)±(−6)2−4⋅4⋅2​​
v1,2​=2⋅4−(−6)±(−6)2−4⋅4⋅2​​
(−6)2−4⋅4⋅2​=2
(−6)2−4⋅4⋅2​
Apply exponent rule: (−a)n=an,if n is even(−6)2=62=62−4⋅4⋅2​
Multiply the numbers: 4⋅4⋅2=32=62−32​
62=36=36−32​
Subtract the numbers: 36−32=4=4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
v1,2​=2⋅4−(−6)±2​
Separate the solutionsv1​=2⋅4−(−6)+2​,v2​=2⋅4−(−6)−2​
v=2⋅4−(−6)+2​:1
2⋅4−(−6)+2​
Apply rule −(−a)=a=2⋅46+2​
Add the numbers: 6+2=8=2⋅48​
Multiply the numbers: 2⋅4=8=88​
Apply rule aa​=1=1
v=2⋅4−(−6)−2​:21​
2⋅4−(−6)−2​
Apply rule −(−a)=a=2⋅46−2​
Subtract the numbers: 6−2=4=2⋅44​
Multiply the numbers: 2⋅4=8=84​
Cancel the common factor: 4=21​
The solutions to the quadratic equation are:v=1,v=21​
v=1,v=21​
Substitute back v=u2,solve for u
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
Solve u2=21​:u=21​​,u=−21​​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
The solutions are
u=1,u=−1,u=21​​,u=−21​​
Substitute back u=cos(x)cos(x)=1,cos(x)=−1,cos(x)=21​​,cos(x)=−21​​
cos(x)=1,cos(x)=−1,cos(x)=21​​,cos(x)=−21​​
cos(x)=1:x=2πn
cos(x)=1
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
cos(x)=21​​:x=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn
cos(x)=21​​
Apply trig inverse properties
cos(x)=21​​
General solutions for cos(x)=21​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn
x=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn
cos(x)=−21​​:x=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
cos(x)=−21​​
Apply trig inverse properties
cos(x)=−21​​
General solutions for cos(x)=−21​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
x=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn,x=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
Show solutions in decimal formx=2πn,x=π+2πn,x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.35619…+2πn,x=−2.35619…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec(3x)=53sin^2(x)+2sin(x)cos^2(x/2)-sin(x)=03tan^2(y)=5sec(y)-1((1-tan^2(a)))/((tan(a)))=2cot^2(a)cos(6x)=cos(2x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024