Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor n,sin(x)+sin(13 n/2-x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

n=132arcsin(1−sin(x))​+134πk​+132x​,n=132π​+132arcsin(−1+sin(x))​+134πk​+132x​
Solution steps
sin(x)+sin(13⋅2n​−x)=1
Move sin(x)to the right side
sin(x)+sin(132n​−x)=1
Subtract sin(x) from both sidessin(x)+sin(132n​−x)−sin(x)=1−sin(x)
Simplifysin(132n​−x)=1−sin(x)
sin(132n​−x)=1−sin(x)
Apply trig inverse properties
sin(13⋅2n​−x)=1−sin(x)
General solutions for sin(132n​−x)=1−sin(x)sin(x)=a⇒x=arcsin(a)+2πk,x=π+arcsin(a)+2πk13⋅2n​−x=arcsin(1−sin(x))+2πk,13⋅2n​−x=π+arcsin(−1+sin(x))+2πk
13⋅2n​−x=arcsin(1−sin(x))+2πk,13⋅2n​−x=π+arcsin(−1+sin(x))+2πk
Solve 13⋅2n​−x=arcsin(1−sin(x))+2πk:n=132arcsin(1−sin(x))​+134πk​+132x​
13⋅2n​−x=arcsin(1−sin(x))+2πk
Move xto the right side
13⋅2n​−x=arcsin(1−sin(x))+2πk
Add x to both sides13⋅2n​−x+x=arcsin(1−sin(x))+2πk+x
Simplify13⋅2n​=arcsin(1−sin(x))+2πk+x
13⋅2n​=arcsin(1−sin(x))+2πk+x
Refine 13⋅2n​:213n​
13⋅2n​
Multiply fractions: a⋅cb​=ca⋅b​=2n⋅13​
213n​=arcsin(1−sin(x))+2πk+x
Multiply both sides by 2
213n​=arcsin(1−sin(x))+2πk+x
Multiply both sides by 2213n​⋅2=arcsin(1−sin(x))⋅2+2πk⋅2+x⋅2
Simplify
213n​⋅2=arcsin(1−sin(x))⋅2+2πk⋅2+x⋅2
Simplify 213n​⋅2:13n
213n​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=213n⋅2​
Cancel the common factor: 2=13n
Simplify arcsin(1−sin(x))⋅2:2arcsin(1−sin(x))
arcsin(1−sin(x))⋅2
Apply the commutative law: arcsin(1−sin(x))⋅2=2arcsin(1−sin(x))2arcsin(1−sin(x))
Simplify 2πk⋅2:4πk
2πk⋅2
Multiply the numbers: 2⋅2=4=4πk
Simplify x⋅2:2x
x⋅2
Apply the commutative law: x⋅2=2x2x
13n=2arcsin(1−sin(x))+4πk+2x
13n=2arcsin(1−sin(x))+4πk+2x
13n=2arcsin(1−sin(x))+4πk+2x
Divide both sides by 13
13n=2arcsin(1−sin(x))+4πk+2x
Divide both sides by 131313n​=132arcsin(1−sin(x))​+134πk​+132x​
Simplifyn=132arcsin(1−sin(x))​+134πk​+132x​
n=132arcsin(1−sin(x))​+134πk​+132x​
Solve 13⋅2n​−x=π+arcsin(−1+sin(x))+2πk:n=132π​+132arcsin(−1+sin(x))​+134πk​+132x​
13⋅2n​−x=π+arcsin(−1+sin(x))+2πk
Move xto the right side
13⋅2n​−x=π+arcsin(−1+sin(x))+2πk
Add x to both sides13⋅2n​−x+x=π+arcsin(−1+sin(x))+2πk+x
Simplify13⋅2n​=π+arcsin(−1+sin(x))+2πk+x
13⋅2n​=π+arcsin(−1+sin(x))+2πk+x
Refine 13⋅2n​:213n​
13⋅2n​
Multiply fractions: a⋅cb​=ca⋅b​=2n⋅13​
213n​=π+arcsin(−1+sin(x))+2πk+x
Multiply both sides by 2
213n​=π+arcsin(−1+sin(x))+2πk+x
Multiply both sides by 2213n​⋅2=π2+arcsin(−1+sin(x))⋅2+2πk⋅2+x⋅2
Simplify
213n​⋅2=π2+arcsin(−1+sin(x))⋅2+2πk⋅2+x⋅2
Simplify 213n​⋅2:13n
213n​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=213n⋅2​
Cancel the common factor: 2=13n
Simplify π2:2π
π2
Apply the commutative law: π2=2π2π
Simplify arcsin(−1+sin(x))⋅2:2arcsin(−1+sin(x))
arcsin(−1+sin(x))⋅2
Apply the commutative law: arcsin(−1+sin(x))⋅2=2arcsin(−1+sin(x))2arcsin(−1+sin(x))
Simplify 2πk⋅2:4πk
2πk⋅2
Multiply the numbers: 2⋅2=4=4πk
Simplify x⋅2:2x
x⋅2
Apply the commutative law: x⋅2=2x2x
13n=2π+2arcsin(−1+sin(x))+4πk+2x
13n=2π+2arcsin(−1+sin(x))+4πk+2x
13n=2π+2arcsin(−1+sin(x))+4πk+2x
Divide both sides by 13
13n=2π+2arcsin(−1+sin(x))+4πk+2x
Divide both sides by 131313n​=132π​+132arcsin(−1+sin(x))​+134πk​+132x​
Simplifyn=132π​+132arcsin(−1+sin(x))​+134πk​+132x​
n=132π​+132arcsin(−1+sin(x))​+134πk​+132x​
n=132arcsin(1−sin(x))​+134πk​+132x​,n=132π​+132arcsin(−1+sin(x))​+134πk​+132x​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5cos^2(a)-2sin(a)-2=0tan^2(a)=((2tan(a)))/((1-tan^2(a)))12cos^2(x)-6=sin(x)cos^2(a)= 2/3sin(2x)=-0.848055484
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024