Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(3x)-21cos(x)+16=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(3x)−21cos(x)+16=0

Solution

x=0.74946…+2πn,x=2π−0.74946…+2πn
+1
Degrees
x=42.94140…∘+360∘n,x=317.05859…∘+360∘n
Solution steps
cos(3x)−21cos(x)+16=0
Rewrite using trig identities
16+cos(3x)−21cos(x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Rewrite using trig identities
cos(3x)
Rewrite as=cos(2x+x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Simplify cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Add the numbers: 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Expand (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Expand cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Simplify 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Expand −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Apply minus-plus rules−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Simplify −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Multiply the numbers: 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Simplify 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Group like terms=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Add similar elements: 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Add similar elements: −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=16+4cos3(x)−3cos(x)−21cos(x)
Simplify=16+4cos3(x)−24cos(x)
16−24cos(x)+4cos3(x)=0
Solve by substitution
16−24cos(x)+4cos3(x)=0
Let: cos(x)=u16−24u+4u3=0
16−24u+4u3=0:u=2,u=−1+3​,u=−1−3​
16−24u+4u3=0
Write in the standard form an​xn+…+a1​x+a0​=04u3−24u+16=0
Factor 4u3−24u+16:4(u−2)(u2+2u−2)
4u3−24u+16
Factor out common term 4:4(u3−6u+4)
4u3−24u+16
Rewrite 16 as 4⋅4Rewrite 24 as 4⋅6=4u3−4⋅6u+4⋅4
Factor out common term 4=4(u3−6u+4)
=4(u3−6u+4)
Factor u3−6u+4:(u−2)(u2+2u−2)
u3−6u+4
Use the rational root theorem
a0​=4,an​=1
The dividers of a0​:1,2,4,The dividers of an​:1
Therefore, check the following rational numbers:±11,2,4​
12​ is a root of the expression, so factor out u−2
=(u−2)u−2u3−6u+4​
u−2u3−6u+4​=u2+2u−2
u−2u3−6u+4​
Divide u−2u3−6u+4​:u−2u3−6u+4​=u2+u−22u2−6u+4​
Divide the leading coefficients of the numerator u3−6u+4
and the divisor u−2:uu3​=u2
Quotient=u2
Multiply u−2 by u2:u3−2u2Subtract u3−2u2 from u3−6u+4 to get new remainderRemainder=2u2−6u+4
Thereforeu−2u3−6u+4​=u2+u−22u2−6u+4​
=u2+u−22u2−6u+4​
Divide u−22u2−6u+4​:u−22u2−6u+4​=2u+u−2−2u+4​
Divide the leading coefficients of the numerator 2u2−6u+4
and the divisor u−2:u2u2​=2u
Quotient=2u
Multiply u−2 by 2u:2u2−4uSubtract 2u2−4u from 2u2−6u+4 to get new remainderRemainder=−2u+4
Thereforeu−22u2−6u+4​=2u+u−2−2u+4​
=u2+2u+u−2−2u+4​
Divide u−2−2u+4​:u−2−2u+4​=−2
Divide the leading coefficients of the numerator −2u+4
and the divisor u−2:u−2u​=−2
Quotient=−2
Multiply u−2 by −2:−2u+4Subtract −2u+4 from −2u+4 to get new remainderRemainder=0
Thereforeu−2−2u+4​=−2
=u2+2u−2
=u2+2u−2
=(u−2)(u2+2u−2)
=4(u−2)(u2+2u−2)
4(u−2)(u2+2u−2)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−2=0oru2+2u−2=0
Solve u−2=0:u=2
u−2=0
Move 2to the right side
u−2=0
Add 2 to both sidesu−2+2=0+2
Simplifyu=2
u=2
Solve u2+2u−2=0:u=−1+3​,u=−1−3​
u2+2u−2=0
Solve with the quadratic formula
u2+2u−2=0
Quadratic Equation Formula:
For a=1,b=2,c=−2u1,2​=2⋅1−2±22−4⋅1⋅(−2)​​
u1,2​=2⋅1−2±22−4⋅1⋅(−2)​​
22−4⋅1⋅(−2)​=23​
22−4⋅1⋅(−2)​
Apply rule −(−a)=a=22+4⋅1⋅2​
Multiply the numbers: 4⋅1⋅2=8=22+8​
22=4=4+8​
Add the numbers: 4+8=12=12​
Prime factorization of 12:22⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
=22⋅3
=22⋅3​
Apply radical rule: =3​22​
Apply radical rule: 22​=2=23​
u1,2​=2⋅1−2±23​​
Separate the solutionsu1​=2⋅1−2+23​​,u2​=2⋅1−2−23​​
u=2⋅1−2+23​​:−1+3​
2⋅1−2+23​​
Multiply the numbers: 2⋅1=2=2−2+23​​
Factor −2+23​:2(−1+3​)
−2+23​
Rewrite as=−2⋅1+23​
Factor out common term 2=2(−1+3​)
=22(−1+3​)​
Divide the numbers: 22​=1=−1+3​
u=2⋅1−2−23​​:−1−3​
2⋅1−2−23​​
Multiply the numbers: 2⋅1=2=2−2−23​​
Factor −2−23​:−2(1+3​)
−2−23​
Rewrite as=−2⋅1−23​
Factor out common term 2=−2(1+3​)
=−22(1+3​)​
Divide the numbers: 22​=1=−(1+3​)
Negate −(1+3​)=−1−3​=−1−3​
The solutions to the quadratic equation are:u=−1+3​,u=−1−3​
The solutions areu=2,u=−1+3​,u=−1−3​
Substitute back u=cos(x)cos(x)=2,cos(x)=−1+3​,cos(x)=−1−3​
cos(x)=2,cos(x)=−1+3​,cos(x)=−1−3​
cos(x)=2:No Solution
cos(x)=2
−1≤cos(x)≤1NoSolution
cos(x)=−1+3​:x=arccos(−1+3​)+2πn,x=2π−arccos(−1+3​)+2πn
cos(x)=−1+3​
Apply trig inverse properties
cos(x)=−1+3​
General solutions for cos(x)=−1+3​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(−1+3​)+2πn,x=2π−arccos(−1+3​)+2πn
x=arccos(−1+3​)+2πn,x=2π−arccos(−1+3​)+2πn
cos(x)=−1−3​:No Solution
cos(x)=−1−3​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=arccos(−1+3​)+2πn,x=2π−arccos(−1+3​)+2πn
Show solutions in decimal formx=0.74946…+2πn,x=2π−0.74946…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^5(x)-sin(x)=0tan(x)=(95.75)/45cos^2(x)=4cos(x-15^0)=((sqrt(2)))/2sin(x)=1-cos^x(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(3x)-21cos(x)+16=0 ?

    The general solution for cos(3x)-21cos(x)+16=0 is x=0.74946…+2pin,x=2pi-0.74946…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024