Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^5(x)-sin(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin5(x)−sin(x)=0

Solution

x=2πn,x=π+2πn,x=23π​+2πn,x=2π​+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=270∘+360∘n,x=90∘+360∘n
Solution steps
sin5(x)−sin(x)=0
Solve by substitution
sin5(x)−sin(x)=0
Let: sin(x)=uu5−u=0
u5−u=0:u=0,u=i,u=−i,u=−1,u=1
u5−u=0
Factor u5−u:u(u2+1)(u+1)(u−1)
u5−u
Factor out common term u:u(u4−1)
u5−u
Apply exponent rule: ab+c=abacu5=u4u=u4u−u
Factor out common term u=u(u4−1)
=u(u4−1)
Factor u4−1:(u2+1)(u+1)(u−1)
u4−1
Rewrite u4−1 as (u2)2−12
u4−1
Rewrite 1 as 12=u4−12
Apply exponent rule: abc=(ab)cu4=(u2)2=(u2)2−12
=(u2)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(u2)2−12=(u2+1)(u2−1)=(u2+1)(u2−1)
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(u2+1)(u+1)(u−1)
=u(u2+1)(u+1)(u−1)
u(u2+1)(u+1)(u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0oru2+1=0oru+1=0oru−1=0
Solve u2+1=0:u=i,u=−i
u2+1=0
Move 1to the right side
u2+1=0
Subtract 1 from both sidesu2+1−1=0−1
Simplifyu2=−1
u2=−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−1​,u=−−1​
Simplify −1​:i
−1​
Apply imaginary number rule: −1​=i=i
Simplify −−1​:−i
−−1​
Apply imaginary number rule: −1​=i=−i
u=i,u=−i
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
The solutions areu=0,u=i,u=−i,u=−1,u=1
Substitute back u=sin(x)sin(x)=0,sin(x)=i,sin(x)=−i,sin(x)=−1,sin(x)=1
sin(x)=0,sin(x)=i,sin(x)=−i,sin(x)=−1,sin(x)=1
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=i:No Solution
sin(x)=i
NoSolution
sin(x)=−i:No Solution
sin(x)=−i
NoSolution
sin(x)=−1:x=23π​+2πn
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=23π​+2πn,x=2π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)=(95.75)/45cos^2(x)=4cos(x-15^0)=((sqrt(2)))/2sin(x)=1-cos^x(x)4-7sin(x)=cos^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^5(x)-sin(x)=0 ?

    The general solution for sin^5(x)-sin(x)=0 is x=2pin,x=pi+2pin,x=(3pi)/2+2pin,x= pi/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024