Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^3(x)=-2/3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin3(x)=−32​

Solution

x=−1.06251…+2πn,x=π+1.06251…+2πn
+1
Degrees
x=−60.87741…∘+360∘n,x=240.87741…∘+360∘n
Solution steps
sin3(x)=−32​
Solve by substitution
sin3(x)=−32​
Let: sin(x)=uu3=−32​
u3=−32​:u=−332​​,u=6332​32​​−i232​63​​,u=6332​32​​+i232​63​​
u3=−32​
For x3=f(a) the solutions are x=3f(a)​,3f(a)​2−1−3​i​,3f(a)​2−1+3​i​
u=3−32​​,u=3−32​​2−1+3​i​,u=3−32​​2−1−3​i​
3−32​​=−332​​
3−32​​
Apply radical rule: n−a​=−na​,if n is odd3−32​​=−332​​=−332​​
Simplify 3−32​​2−1+3​i​:6332​32​​−i232​63​​
3−32​​2−1+3​i​
3−32​​=−332​​
3−32​​
Apply radical rule: n−a​=−na​,if n is odd3−32​​=−332​​=−332​​
=−2−1+3​i​332​​
Multiply fractions: a⋅cb​=ca⋅b​=−2(−1+3​i)332​​​
332​​=33​32​​
332​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=33​32​​
=−233​32​​(−1+3​i)​
Multiply (−1+3​i)33​32​​:33​32​(−1+3​i)​
(−1+3​i)33​32​​
Multiply fractions: a⋅cb​=ca⋅b​=33​32​(−1+3​i)​
=−233​32​(−1+3​i)​​
Apply the fraction rule: acb​​=c⋅ab​=−233​32​(−1+3​i)​
Apply radical rule: na​=an1​32​=231​=233​231​(−1+3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=33​⋅2−31​+1−1+3​i​
Subtract the numbers: 1−31​=32​=−33​⋅232​−1+3​i​
Rationalize −33​⋅232​−1+3​i​:−6332​32​(−1+3​i)​
−33​⋅232​−1+3​i​
Multiply by the conjugate 332​332​​=−33​⋅232​⋅332​(−1+3​i)⋅332​​
33​⋅232​⋅332​=3⋅232​
33​⋅232​⋅332​
Apply exponent rule: ab⋅ac=ab+c332​33​=332​⋅331​=332​+31​=332​+31​⋅232​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=3⋅232​
=−3⋅232​332​(−1+3​i)​
Multiply by the conjugate 32​32​​=−3⋅232​32​332​(−1+3​i)32​​
3⋅232​32​=6
3⋅232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=3⋅232​+31​
232​+31​=2
232​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=3⋅2
Multiply the numbers: 3⋅2=6=6
=−6332​32​(−1+3​i)​
=−6332​32​(−1+3​i)​
Rewrite −6332​32​(−1+3​i)​ in standard complex form: 632​⋅332​​−263​32​​i
−6332​32​(−1+3​i)​
Cancel 6332​32​(−1+3​i)​:232​33​−1+3​i​
6332​32​(−1+3​i)​
Factor 6:2⋅3
Factor 6=2⋅3
=2⋅3332​32​(−1+3​i)​
Cancel 2⋅3332​32​(−1+3​i)​:232​⋅331​−1+3​i​
2⋅3332​32​(−1+3​i)​
Apply exponent rule: xbxa​=xb−a1​3332​​=31−32​1​=2⋅3−32​+132​(−1+3​i)​
Subtract the numbers: 1−32​=31​=2⋅331​32​(−1+3​i)​
Apply radical rule: na​=an1​32​=231​=2⋅331​231​(−1+3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=331​⋅2−31​+1−1+3​i​
Subtract the numbers: 1−31​=32​=232​⋅331​−1+3​i​
=232​⋅331​−1+3​i​
331​=33​
Apply radical rule: an1​=na​331​=33​=232​33​−1+3​i​
=−232​33​−1+3​i​
=−232​33​−1+3​i​
Apply the fraction rule: ca±b​=ca​±cb​232​33​−1+3​i​=−(−232​33​1​)−(232​33​3​i​)=−(−232​33​1​)−(232​33​3​i​)
Remove parentheses: (a)=a,−(−a)=a=232​33​1​−232​33​3​i​
Cancel 232​33​3​i​:232​63​i​
232​33​3​i​
Cancel 232​33​3​i​:232​63​i​
232​33​3​i​
Apply radical rule: na​=an1​33​=331​,3​=321​=232​⋅331​321​i​
Apply exponent rule: xbxa​=xa−b331​321​​=321​−31​=232​321​−31​i​
Subtract the numbers: 21​−31​=61​=232​361​i​
Apply radical rule: an1​=na​361​=63​=232​63​i​
=232​63​i​
=232​33​1​−232​63​i​
−232​63​​=−263​32​​
−232​63​​
Multiply by the conjugate 32​32​​=−232​32​63​32​​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=−263​32​​
=232​33​1​−263​32​​i
232​33​1​=632​⋅332​​
232​33​1​
Multiply by the conjugate 32​32​​=232​33​32​1⋅32​​
1⋅32​=32​
232​33​32​=233​
232​33​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=33​⋅232​+31​
232​+31​=2
232​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=233​
=233​32​​
Multiply by the conjugate 332​332​​=233​⋅332​32​⋅332​​
233​⋅332​=6
233​⋅332​
Apply exponent rule: ab⋅ac=ab+c332​33​=332​⋅331​=332​+31​=2⋅332​+31​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=2⋅3
Multiply the numbers: 2⋅3=6=6
=632​⋅332​​
=632​⋅332​​−263​32​​i
=632​⋅332​​−263​32​​i
Simplify 3−32​​2−1−3​i​:6332​32​​+i232​63​​
3−32​​2−1−3​i​
3−32​​=−332​​
3−32​​
Apply radical rule: n−a​=−na​,if n is odd3−32​​=−332​​=−332​​
=−2−1−3​i​332​​
Multiply fractions: a⋅cb​=ca⋅b​=−2(−1−3​i)332​​​
332​​=33​32​​
332​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=33​32​​
=−233​32​​(−1−3​i)​
Multiply (−1−3​i)33​32​​:33​32​(−1−3​i)​
(−1−3​i)33​32​​
Multiply fractions: a⋅cb​=ca⋅b​=33​32​(−1−3​i)​
=−233​32​(−1−3​i)​​
Apply the fraction rule: acb​​=c⋅ab​=−233​32​(−1−3​i)​
Apply radical rule: na​=an1​32​=231​=233​231​(−1−3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=33​⋅2−31​+1−1−3​i​
Subtract the numbers: 1−31​=32​=−33​⋅232​−1−3​i​
Rationalize −33​⋅232​−1−3​i​:−6332​32​(−1−3​i)​
−33​⋅232​−1−3​i​
Multiply by the conjugate 332​332​​=−33​⋅232​⋅332​(−1−3​i)⋅332​​
33​⋅232​⋅332​=3⋅232​
33​⋅232​⋅332​
Apply exponent rule: ab⋅ac=ab+c332​33​=332​⋅331​=332​+31​=332​+31​⋅232​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=3⋅232​
=−3⋅232​332​(−1−3​i)​
Multiply by the conjugate 32​32​​=−3⋅232​32​332​(−1−3​i)32​​
3⋅232​32​=6
3⋅232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=3⋅232​+31​
232​+31​=2
232​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=3⋅2
Multiply the numbers: 3⋅2=6=6
=−6332​32​(−1−3​i)​
=−6332​32​(−1−3​i)​
Rewrite −6332​32​(−1−3​i)​ in standard complex form: 632​⋅332​​+263​32​​i
−6332​32​(−1−3​i)​
Cancel 6332​32​(−1−3​i)​:232​33​−1−3​i​
6332​32​(−1−3​i)​
Factor 6:2⋅3
Factor 6=2⋅3
=2⋅3332​32​(−1−3​i)​
Cancel 2⋅3332​32​(−1−3​i)​:232​⋅331​−1−3​i​
2⋅3332​32​(−1−3​i)​
Apply exponent rule: xbxa​=xb−a1​3332​​=31−32​1​=2⋅3−32​+132​(−1−3​i)​
Subtract the numbers: 1−32​=31​=2⋅331​32​(−1−3​i)​
Apply radical rule: na​=an1​32​=231​=2⋅331​231​(−1−3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=331​⋅2−31​+1−1−3​i​
Subtract the numbers: 1−31​=32​=232​⋅331​−1−3​i​
=232​⋅331​−1−3​i​
331​=33​
Apply radical rule: an1​=na​331​=33​=232​33​−1−3​i​
=−232​33​−1−3​i​
=−232​33​−1−3​i​
Apply the fraction rule: ca±b​=ca​±cb​232​33​−1−3​i​=−(−232​33​1​)−(−232​33​3​i​)=−(−232​33​1​)−(−232​33​3​i​)
Apply rule −(−a)=a=232​33​1​+232​33​3​i​
Cancel 232​33​3​i​:232​63​i​
232​33​3​i​
Cancel 232​33​3​i​:232​63​i​
232​33​3​i​
Apply radical rule: na​=an1​33​=331​,3​=321​=232​⋅331​321​i​
Apply exponent rule: xbxa​=xa−b331​321​​=321​−31​=232​321​−31​i​
Subtract the numbers: 21​−31​=61​=232​361​i​
Apply radical rule: an1​=na​361​=63​=232​63​i​
=232​63​i​
=232​33​1​+232​63​i​
232​63​​=263​32​​
232​63​​
Multiply by the conjugate 32​32​​=232​32​63​32​​
232​32​=2
232​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=263​32​​
=232​33​1​+263​32​​i
232​33​1​=632​⋅332​​
232​33​1​
Multiply by the conjugate 32​32​​=232​33​32​1⋅32​​
1⋅32​=32​
232​33​32​=233​
232​33​32​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=33​⋅232​+31​
232​+31​=2
232​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=233​
=233​32​​
Multiply by the conjugate 332​332​​=233​⋅332​32​⋅332​​
233​⋅332​=6
233​⋅332​
Apply exponent rule: ab⋅ac=ab+c332​33​=332​⋅331​=332​+31​=2⋅332​+31​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=2⋅3
Multiply the numbers: 2⋅3=6=6
=632​⋅332​​
=632​⋅332​​+263​32​​i
=632​⋅332​​+263​32​​i
u=−332​​,u=6332​32​​−i232​63​​,u=6332​32​​+i232​63​​
Substitute back u=sin(x)sin(x)=−332​​,sin(x)=6332​32​​−i232​63​​,sin(x)=6332​32​​+i232​63​​
sin(x)=−332​​,sin(x)=6332​32​​−i232​63​​,sin(x)=6332​32​​+i232​63​​
sin(x)=−332​​:x=arcsin(−332​​)+2πn,x=π+arcsin(332​​)+2πn
sin(x)=−332​​
Apply trig inverse properties
sin(x)=−332​​
General solutions for sin(x)=−332​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−332​​)+2πn,x=π+arcsin(332​​)+2πn
x=arcsin(−332​​)+2πn,x=π+arcsin(332​​)+2πn
sin(x)=6332​32​​−i232​63​​:No Solution
sin(x)=6332​32​​−i232​63​​
NoSolution
sin(x)=6332​32​​+i232​63​​:No Solution
sin(x)=6332​32​​+i232​63​​
NoSolution
Combine all the solutionsx=arcsin(−332​​)+2πn,x=π+arcsin(332​​)+2πn
Show solutions in decimal formx=−1.06251…+2πn,x=π+1.06251…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,tan^2(x)=tan^2(y)2cos^2(x)(1+2cos^2(x))=2-6sin(x)-5cos(x)=22sin^2(x)+cos^2(x)=22sin^2(x)+sin^2(x)+cos^2(x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^3(x)=-2/3 ?

    The general solution for sin^3(x)=-2/3 is x=-1.06251…+2pin,x=pi+1.06251…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024