Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^3(x)=-2/3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin3(x)=−32​

Solution

x=−1.06251…+2πn,x=π+1.06251…+2πn
+1
Degrees
x=−60.87741…∘+360∘n,x=240.87741…∘+360∘n
Solution steps
sin3(x)=−32​
Solve by substitution
sin3(x)=−32​
Let: sin(x)=uu3=−32​
u3=−32​
For x3=f(a) the solutions are
Apply radical rule: if n is odd
Simplify
Apply radical rule: if n is odd
Multiply fractions: a⋅cb​=ca⋅b​
Apply radical rule: assuming a≥0,b≥0
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
Apply the fraction rule: acb​​=c⋅ab​
Apply radical rule:
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​
Subtract the numbers: 1−31​=32​
Rationalize
Multiply by the conjugate 332​332​​
Apply exponent rule: ab⋅ac=ab+c=332​+31​⋅232​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=3⋅232​
=−3⋅232​332​(−1+3​i)​
Multiply by the conjugate
Apply exponent rule: ab⋅ac=ab+c=3⋅232​+31​
232​+31​=2
232​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=3⋅2
Multiply the numbers: 3⋅2=6=6
Rewrite in standard complex form:
Cancel
Factor 6:2⋅3
Factor 6=2⋅3
Cancel
Apply exponent rule: xbxa​=xb−a1​3332​​=31−32​1​
Subtract the numbers: 1−32​=31​
Apply radical rule: =2⋅331​231​(−1+3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=331​⋅2−31​+1−1+3​i​
Subtract the numbers: 1−31​=32​=232​⋅331​−1+3​i​
=232​⋅331​−1+3​i​
Apply radical rule:
Apply the fraction rule: ca±b​=ca​±cb​
Remove parentheses: (a)=a,−(−a)=a
Cancel
Cancel
Apply radical rule: =232​⋅331​321​i​
Apply exponent rule: xbxa​=xa−b331​321​​=321​−31​=232​321​−31​i​
Subtract the numbers: 21​−31​=61​=232​361​i​
Apply radical rule:
Multiply by the conjugate
Apply exponent rule: ab⋅ac=ab+c=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
Multiply by the conjugate
Apply exponent rule: ab⋅ac=ab+c
232​+31​=2
232​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
Multiply by the conjugate 332​332​​
Apply exponent rule: ab⋅ac=ab+c=2⋅332​+31​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=2⋅3
Multiply the numbers: 2⋅3=6=6
Simplify
Apply radical rule: if n is odd
Multiply fractions: a⋅cb​=ca⋅b​
Apply radical rule: assuming a≥0,b≥0
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
Apply the fraction rule: acb​​=c⋅ab​
Apply radical rule:
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​
Subtract the numbers: 1−31​=32​
Rationalize
Multiply by the conjugate 332​332​​
Apply exponent rule: ab⋅ac=ab+c=332​+31​⋅232​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=3⋅232​
=−3⋅232​332​(−1−3​i)​
Multiply by the conjugate
Apply exponent rule: ab⋅ac=ab+c=3⋅232​+31​
232​+31​=2
232​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=3⋅2
Multiply the numbers: 3⋅2=6=6
Rewrite in standard complex form:
Cancel
Factor 6:2⋅3
Factor 6=2⋅3
Cancel
Apply exponent rule: xbxa​=xb−a1​3332​​=31−32​1​
Subtract the numbers: 1−32​=31​
Apply radical rule: =2⋅331​231​(−1−3​i)​
Apply exponent rule: xbxa​=xb−a1​21231​​=21−31​1​=331​⋅2−31​+1−1−3​i​
Subtract the numbers: 1−31​=32​=232​⋅331​−1−3​i​
=232​⋅331​−1−3​i​
Apply radical rule:
Apply the fraction rule: ca±b​=ca​±cb​
Apply rule −(−a)=a
Cancel
Cancel
Apply radical rule: =232​⋅331​321​i​
Apply exponent rule: xbxa​=xa−b331​321​​=321​−31​=232​321​−31​i​
Subtract the numbers: 21​−31​=61​=232​361​i​
Apply radical rule:
Multiply by the conjugate
Apply exponent rule: ab⋅ac=ab+c=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
Multiply by the conjugate
Apply exponent rule: ab⋅ac=ab+c
232​+31​=2
232​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
Multiply by the conjugate 332​332​​
Apply exponent rule: ab⋅ac=ab+c=2⋅332​+31​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=2⋅3
Multiply the numbers: 2⋅3=6=6
Substitute back u=sin(x)
Apply trig inverse properties
General solutions for sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πn
No Solution
NoSolution
No Solution
NoSolution
Combine all the solutions
Show solutions in decimal formx=−1.06251…+2πn,x=π+1.06251…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,tan^2(x)=tan^2(y)2cos^2(x)(1+2cos^2(x))=2-6sin(x)-5cos(x)=22sin^2(x)+cos^2(x)=22sin^2(x)+sin^2(x)+cos^2(x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^3(x)=-2/3 ?

    The general solution for sin^3(x)=-2/3 is x=-1.06251…+2pin,x=pi+1.06251…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024