Soluções
Calculadora de integrais (antiderivadas)Calculadora de derivadasCalculadora de álgebraCalculadora de matrizesMais...
Gráficos
Gráfico de linhaGráfico exponencialGráfico QuadráticoGráfico de sinMais...
Calculadoras
Calculadora de IMCCalculadora de juros compostosCalculadora de porcentagemCalculadora de aceleraçãoMais...
Geometria
Calculadora do Teorema de PitágorasCalculadora de área de círculoCalculadora Triângulo IsóscelesCalculadora de TriângulosMais...
AI Chat
Ferramentas
CadernoGruposFolhas de "cola"Fichas de trabalhoPráticaVerificar
pt
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometria >

2sin^2(x)+sin^3(x)-1=0

  • Pré-álgebra
  • Álgebra
  • Pré-cálculo
  • Cálculo
  • Funções
  • Álgebra Linear
  • Trigonometria
  • Estatística
  • Química
  • Conversões

Solução

2sin2(x)+sin3(x)−1=0

Solução

x=23π​+2πn,x=0.66623…+2πn,x=π−0.66623…+2πn
+1
Graus
x=270∘+360∘n,x=38.17270…∘+360∘n,x=141.82729…∘+360∘n
Passos da solução
2sin2(x)+sin3(x)−1=0
Usando o método de substituição
2sin2(x)+sin3(x)−1=0
Sea: sin(x)=u2u2+u3−1=0
2u2+u3−1=0:u=−1,u=2−1+5​​,u=2−1−5​​
2u2+u3−1=0
Escrever na forma padrão an​xn+…+a1​x+a0​=0u3+2u2−1=0
Fatorar u3+2u2−1:(u+1)(u2+u−1)
u3+2u2−1
Utilizar o teorema das raízes racionais
a0​=1,an​=1
Os divisores de a0​:1,Os divisores de an​:1
Portanto, verificar os seguintes números racionais:±11​
−11​ é a raiz da expressão, portanto, fatorar u+1
=(u+1)u+1u3+2u2−1​
u+1u3+2u2−1​=u2+u−1
u+1u3+2u2−1​
Dividir u+1u3+2u2−1​:u+1u3+2u2−1​=u2+u+1u2−1​
Dividir os coeficientes dos termos de maior grau do numerador u3+2u2−1
e o divisor u+1:uu3​=u2
Quociente=u2
Multiplicar u+1 por u2:u3+u2Subtrair u3+u2 de u3+2u2−1 para obter um novo restoResto=u2−1
Portantou+1u3+2u2−1​=u2+u+1u2−1​
=u2+u+1u2−1​
Dividir u+1u2−1​:u+1u2−1​=u+u+1−u−1​
Dividir os coeficientes dos termos de maior grau do numerador u2−1
e o divisor u+1:uu2​=u
Quociente=u
Multiplicar u+1 por u:u2+uSubtrair u2+u de u2−1 para obter um novo restoResto=−u−1
Portantou+1u2−1​=u+u+1−u−1​
=u2+u+u+1−u−1​
Dividir u+1−u−1​:u+1−u−1​=−1
Dividir os coeficientes dos termos de maior grau do numerador −u−1
e o divisor u+1:u−u​=−1
Quociente=−1
Multiplicar u+1 por −1:−u−1Subtrair −u−1 de −u−1 para obter um novo restoResto=0
Portantou+1−u−1​=−1
=u2+u−1
=(u+1)(u2+u−1)
(u+1)(u2+u−1)=0
Usando o princípio do fator zero: Se ab=0então a=0ou b=0u+1=0oru2+u−1=0
Resolver u+1=0:u=−1
u+1=0
Mova 1para o lado direito
u+1=0
Subtrair 1 de ambos os ladosu+1−1=0−1
Simplificaru=−1
u=−1
Resolver u2+u−1=0:u=2−1+5​​,u=2−1−5​​
u2+u−1=0
Resolver com a fórmula quadrática
u2+u−1=0
Fórmula geral para equações de segundo grau:
Para a=1,b=1,c=−1u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
12−4⋅1⋅(−1)​=5​
12−4⋅1⋅(−1)​
Aplicar a regra 1a=112=1=1−4⋅1⋅(−1)​
Aplicar a regra −(−a)=a=1+4⋅1⋅1​
Multiplicar os números: 4⋅1⋅1=4=1+4​
Somar: 1+4=5=5​
u1,2​=2⋅1−1±5​​
Separe as soluçõesu1​=2⋅1−1+5​​,u2​=2⋅1−1−5​​
u=2⋅1−1+5​​:2−1+5​​
2⋅1−1+5​​
Multiplicar os números: 2⋅1=2=2−1+5​​
u=2⋅1−1−5​​:2−1−5​​
2⋅1−1−5​​
Multiplicar os números: 2⋅1=2=2−1−5​​
As soluções para a equação de segundo grau são: u=2−1+5​​,u=2−1−5​​
As soluções sãou=−1,u=2−1+5​​,u=2−1−5​​
Substituir na equação u=sin(x)sin(x)=−1,sin(x)=2−1+5​​,sin(x)=2−1−5​​
sin(x)=−1,sin(x)=2−1+5​​,sin(x)=2−1−5​​
sin(x)=−1:x=23π​+2πn
sin(x)=−1
Soluções gerais para sin(x)=−1
sin(x) tabela de periodicidade com ciclo de 2πn:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
sin(x)=2−1+5​​:x=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
sin(x)=2−1+5​​
Aplique as propriedades trigonométricas inversas
sin(x)=2−1+5​​
Soluções gerais para sin(x)=2−1+5​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
x=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
sin(x)=2−1−5​​:Sem solução
sin(x)=2−1−5​​
−1≤sin(x)≤1Semsoluc\c​a~o
Combinar toda as soluçõesx=23π​+2πn,x=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
Mostrar soluções na forma decimalx=23π​+2πn,x=0.66623…+2πn,x=π−0.66623…+2πn

Gráfico

Sorry, your browser does not support this application
Visualizar gráfico interativo 

Exemplos populares

2cos^2(x)=3cos(x)-12cos2(x)=3cos(x)−1sin^2(x)-4sin(x)+4=0sin2(x)−4sin(x)+4=03cos^2(x)-10cos(x)+3=03cos2(x)−10cos(x)+3=0(m+1)sin(x)+2-m=0(m+1)sin(x)+2−m=0sin^5(x)+sin(x)+2sin^2(x)=1sin5(x)+sin(x)+2sin2(x)=1
Ferramentas de estudoSolucionador de matemática de IAAI ChatFichas de trabalhoPráticaFolhas de "cola"CalculadorasCalculadora gráficaCalculadora de GeometriaVerifique a solução
AplicativosAplicativo Simbolab (Android)Calculadora gráfica (Android)Prática (Android)Aplicativo Simbolab (iOS)Calculadora gráfica (iOS)Prática (iOS)Extensão do Chrome
EmpresaSobre SimbolabBlogAjuda
JurídicoPrivacidadeService TermsPolítica de CookiesConfigurações de cookiesNão venda ou compartilhe minhas informações pessoaisDireitos autorais, diretrizes da comunidade, DSA e outros recursos legaisCentro Jurídico Learneo
Mídia social
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024