Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^2(x)+sin^3(x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin2(x)+sin3(x)−1=0

Solution

x=23π​+2πn,x=0.66623…+2πn,x=π−0.66623…+2πn
+1
Degrees
x=270∘+360∘n,x=38.17270…∘+360∘n,x=141.82729…∘+360∘n
Solution steps
2sin2(x)+sin3(x)−1=0
Solve by substitution
2sin2(x)+sin3(x)−1=0
Let: sin(x)=u2u2+u3−1=0
2u2+u3−1=0:u=−1,u=2−1+5​​,u=2−1−5​​
2u2+u3−1=0
Write in the standard form an​xn+…+a1​x+a0​=0u3+2u2−1=0
Factor u3+2u2−1:(u+1)(u2+u−1)
u3+2u2−1
Use the rational root theorem
a0​=1,an​=1
The dividers of a0​:1,The dividers of an​:1
Therefore, check the following rational numbers:±11​
−11​ is a root of the expression, so factor out u+1
=(u+1)u+1u3+2u2−1​
u+1u3+2u2−1​=u2+u−1
u+1u3+2u2−1​
Divide u+1u3+2u2−1​:u+1u3+2u2−1​=u2+u+1u2−1​
Divide the leading coefficients of the numerator u3+2u2−1
and the divisor u+1:uu3​=u2
Quotient=u2
Multiply u+1 by u2:u3+u2Subtract u3+u2 from u3+2u2−1 to get new remainderRemainder=u2−1
Thereforeu+1u3+2u2−1​=u2+u+1u2−1​
=u2+u+1u2−1​
Divide u+1u2−1​:u+1u2−1​=u+u+1−u−1​
Divide the leading coefficients of the numerator u2−1
and the divisor u+1:uu2​=u
Quotient=u
Multiply u+1 by u:u2+uSubtract u2+u from u2−1 to get new remainderRemainder=−u−1
Thereforeu+1u2−1​=u+u+1−u−1​
=u2+u+u+1−u−1​
Divide u+1−u−1​:u+1−u−1​=−1
Divide the leading coefficients of the numerator −u−1
and the divisor u+1:u−u​=−1
Quotient=−1
Multiply u+1 by −1:−u−1Subtract −u−1 from −u−1 to get new remainderRemainder=0
Thereforeu+1−u−1​=−1
=u2+u−1
=(u+1)(u2+u−1)
(u+1)(u2+u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0oru2+u−1=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u2+u−1=0:u=2−1+5​​,u=2−1−5​​
u2+u−1=0
Solve with the quadratic formula
u2+u−1=0
Quadratic Equation Formula:
For a=1,b=1,c=−1u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
12−4⋅1⋅(−1)​=5​
12−4⋅1⋅(−1)​
Apply rule 1a=112=1=1−4⋅1⋅(−1)​
Apply rule −(−a)=a=1+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2⋅1−1±5​​
Separate the solutionsu1​=2⋅1−1+5​​,u2​=2⋅1−1−5​​
u=2⋅1−1+5​​:2−1+5​​
2⋅1−1+5​​
Multiply the numbers: 2⋅1=2=2−1+5​​
u=2⋅1−1−5​​:2−1−5​​
2⋅1−1−5​​
Multiply the numbers: 2⋅1=2=2−1−5​​
The solutions to the quadratic equation are:u=2−1+5​​,u=2−1−5​​
The solutions areu=−1,u=2−1+5​​,u=2−1−5​​
Substitute back u=sin(x)sin(x)=−1,sin(x)=2−1+5​​,sin(x)=2−1−5​​
sin(x)=−1,sin(x)=2−1+5​​,sin(x)=2−1−5​​
sin(x)=−1:x=23π​+2πn
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
sin(x)=2−1+5​​:x=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
sin(x)=2−1+5​​
Apply trig inverse properties
sin(x)=2−1+5​​
General solutions for sin(x)=2−1+5​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
x=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
sin(x)=2−1−5​​:No Solution
sin(x)=2−1−5​​
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=23π​+2πn,x=arcsin(2−1+5​​)+2πn,x=π−arcsin(2−1+5​​)+2πn
Show solutions in decimal formx=23π​+2πn,x=0.66623…+2πn,x=π−0.66623…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(x)=3cos(x)-1sin^2(x)-4sin(x)+4=03cos^2(x)-10cos(x)+3=0(m+1)sin(x)+2-m=0sin^5(x)+sin(x)+2sin^2(x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin^2(x)+sin^3(x)-1=0 ?

    The general solution for 2sin^2(x)+sin^3(x)-1=0 is x=(3pi)/2+2pin,x=0.66623…+2pin,x=pi-0.66623…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024