Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

a=((1+sin^2(x)))/((1-sin^2(x)))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

a=(1−sin2(x))(1+sin2(x))​

Solution

x=arcsin(1+a−1+a​​)+2πn,x=π+arcsin(−1+a−1+a​​)+2πn,x=arcsin(−1+a−1+a​​)+2πn,x=π+arcsin(1+a−1+a​​)+2πn
Solution steps
a=(1−sin2(x))(1+sin2(x))​
Switch sides1−sin2(x)1+sin2(x)​=a
Solve by substitution
1−sin2(x)1+sin2(x)​=a
Let: sin(x)=u1−u21+u2​=a
1−u21+u2​=a:u=1+a−1+a​​,u=−1+a−1+a​​;a=−1
1−u21+u2​=a
Multiply both sides by 1−u2
1−u21+u2​=a
Multiply both sides by 1−u21−u21+u2​(1−u2)=a(1−u2)
Simplify1+u2=a(1−u2)
1+u2=a(1−u2)
Solve 1+u2=a(1−u2):u=1+a−1+a​​,u=−1+a−1+a​​;a=−1
1+u2=a(1−u2)
Move 1to the right side
1+u2=a(1−u2)
Subtract 1 from both sides1+u2−1=a(1−u2)−1
Simplifyu2=a(1−u2)−1
u2=a(1−u2)−1
Move a(1−u2)to the left side
u2=a(1−u2)−1
Subtract a(1−u2) from both sidesu2−a(1−u2)=a(1−u2)−1−a(1−u2)
Simplifyu2−a(1−u2)=−1
u2−a(1−u2)=−1
Expand −a(1−u2):−a+au2
−a(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−a,b=1,c=u2=−a⋅1−(−a)u2
Apply minus-plus rules−(−a)=a=−1⋅a+au2
Multiply: 1⋅a=a=−a+au2
u2−a+au2=−1
Move ato the right side
u2−a+au2=−1
Add a to both sidesu2−a+au2+a=−1+a
Simplifyu2+au2=−1+a
u2+au2=−1+a
Factor u2+au2:u2(1+a)
u2+au2
Factor out common term u2=u2(1+a)
u2(1+a)=−1+a
Divide both sides by 1+a;a=−1
u2(1+a)=−1+a
Divide both sides by 1+a;a=−11+au2(1+a)​=−1+a1​+1+aa​;a=−1
Simplify
1+au2(1+a)​=−1+a1​+1+aa​
Simplify 1+au2(1+a)​:u2
1+au2(1+a)​
Cancel the common factor: 1+a=u2
Simplify −1+a1​+1+aa​:1+a−1+a​
−1+a1​+1+aa​
Apply rule ca​±cb​=ca±b​=1+a−1+a​
u2=1+a−1+a​;a=−1
u2=1+a−1+a​;a=−1
u2=1+a−1+a​;a=−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1+a−1+a​​,u=−1+a−1+a​​;a=−1
u=1+a−1+a​​,u=−1+a−1+a​​;a=−1
Substitute back u=sin(x)sin(x)=1+a−1+a​​,sin(x)=−1+a−1+a​​;a=−1
sin(x)=1+a−1+a​​,sin(x)=−1+a−1+a​​;a=−1
sin(x)=1+a−1+a​​:x=arcsin(1+a−1+a​​)+2πn,x=π+arcsin(−1+a−1+a​​)+2πn
sin(x)=1+a−1+a​​
Apply trig inverse properties
sin(x)=1+a−1+a​​
General solutions for sin(x)=1+a−1+a​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin(1+a−1+a​​)+2πn,x=π+arcsin(−1+a−1+a​​)+2πn
x=arcsin(1+a−1+a​​)+2πn,x=π+arcsin(−1+a−1+a​​)+2πn
sin(x)=−1+a−1+a​​:x=arcsin(−1+a−1+a​​)+2πn,x=π+arcsin(1+a−1+a​​)+2πn
sin(x)=−1+a−1+a​​
Apply trig inverse properties
sin(x)=−1+a−1+a​​
General solutions for sin(x)=−1+a−1+a​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−1+a−1+a​​)+2πn,x=π+arcsin(1+a−1+a​​)+2πn
x=arcsin(−1+a−1+a​​)+2πn,x=π+arcsin(1+a−1+a​​)+2πn
Combine all the solutionsx=arcsin(1+a−1+a​​)+2πn,x=π+arcsin(−1+a−1+a​​)+2πn,x=arcsin(−1+a−1+a​​)+2πn,x=π+arcsin(1+a−1+a​​)+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,b*f=sin^3(x)2sin^2(x)+sin^3(x)-1=02cos^2(x)=3cos(x)-1sin^2(x)-4sin(x)+4=03cos^2(x)-10cos(x)+3=0

Frequently Asked Questions (FAQ)

  • What is the general solution for a=((1+sin^2(x)))/((1-sin^2(x))) ?

    The general solution for a=((1+sin^2(x)))/((1-sin^2(x))) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024