Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

5cos^2(x)-12sin^2(x)=13

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

5cos2(x)−12sin2(x)=13

Solution

NoSolutionforx∈R
Solution steps
5cos2(x)−12sin2(x)=13
Subtract 13 from both sides5cos2(x)−12sin2(x)−13=0
Rewrite using trig identities
−13−12sin2(x)+5cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−13−12sin2(x)+5(1−sin2(x))
Simplify −13−12sin2(x)+5(1−sin2(x)):−17sin2(x)−8
−13−12sin2(x)+5(1−sin2(x))
Expand 5(1−sin2(x)):5−5sin2(x)
5(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=5,b=1,c=sin2(x)=5⋅1−5sin2(x)
Multiply the numbers: 5⋅1=5=5−5sin2(x)
=−13−12sin2(x)+5−5sin2(x)
Simplify −13−12sin2(x)+5−5sin2(x):−17sin2(x)−8
−13−12sin2(x)+5−5sin2(x)
Group like terms=−12sin2(x)−5sin2(x)−13+5
Add similar elements: −12sin2(x)−5sin2(x)=−17sin2(x)=−17sin2(x)−13+5
Add/Subtract the numbers: −13+5=−8=−17sin2(x)−8
=−17sin2(x)−8
=−17sin2(x)−8
−8−17sin2(x)=0
Solve by substitution
−8−17sin2(x)=0
Let: sin(x)=u−8−17u2=0
−8−17u2=0:u=i17234​​,u=−i17234​​
−8−17u2=0
Move 8to the right side
−8−17u2=0
Add 8 to both sides−8−17u2+8=0+8
Simplify−17u2=8
−17u2=8
Divide both sides by −17
−17u2=8
Divide both sides by −17−17−17u2​=−178​
Simplifyu2=−178​
u2=−178​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−178​​,u=−−178​​
Simplify −178​​:i17234​​
−178​​
Apply radical rule: −a​=−1​a​−178​​=−1​178​​=−1​178​​
Apply imaginary number rule: −1​=i=i178​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0178​​=17​8​​=i17​8​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: nab​=na​nb​=2​22​
Apply radical rule: nan​=a22​=2=22​
=i17​22​​
17​22​​=17234​​
17​22​​
Multiply by the conjugate 17​17​​=17​17​22​17​​
22​17​=234​
22​17​
Apply radical rule: a​b​=a⋅b​2​17​=2⋅17​=22⋅17​
Multiply the numbers: 2⋅17=34=234​
17​17​=17
17​17​
Apply radical rule: a​a​=a17​17​=17=17
=17234​​
=i17234​​
Rewrite i17234​​ in standard complex form: 17234​​i
i17234​​
17234​​=17​22​​
17234​​
Factor 34​:2​17​
Factor 34=2⋅17=2⋅17​
Apply radical rule: nab​=na​nb​=2​17​
=1722​17​​
Cancel 1722​17​​:17​22​​
1722​17​​
Apply radical rule: na​=an1​17​=1721​=1722​⋅1721​​
Apply exponent rule: xbxa​=xb−a1​1711721​​=171−21​1​=171−21​22​​
Subtract the numbers: 1−21​=21​=1721​22​​
Apply radical rule: an1​=na​1721​=17​=17​22​​
=17​22​​
=i17​22​​
Multiply fractions: a⋅cb​=ca⋅b​=17​22​i​
17​22​​=17234​​
17​22​​
Multiply by the conjugate 17​17​​=17​17​22​17​​
22​17​=234​
22​17​
Apply radical rule: a​b​=a⋅b​2​17​=2⋅17​=22⋅17​
Multiply the numbers: 2⋅17=34=234​
17​17​=17
17​17​
Apply radical rule: a​a​=a17​17​=17=17
=17234​​
=17234​​i
=17234​​i
Simplify −−178​​:−i17234​​
−−178​​
Simplify −178​​:i17​22​​
−178​​
Apply radical rule: −a​=−1​a​−178​​=−1​178​​=−1​178​​
Apply imaginary number rule: −1​=i=i178​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0178​​=17​8​​=i17​8​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: nab​=na​nb​=2​22​
Apply radical rule: nan​=a22​=2=22​
=i17​22​​
=−i17​22​​
17​22​​=17234​​
17​22​​
Multiply by the conjugate 17​17​​=17​17​22​17​​
22​17​=234​
22​17​
Apply radical rule: a​b​=a⋅b​2​17​=2⋅17​=22⋅17​
Multiply the numbers: 2⋅17=34=234​
17​17​=17
17​17​
Apply radical rule: a​a​=a17​17​=17=17
=17234​​
=−17234​​i
u=i17234​​,u=−i17234​​
Substitute back u=sin(x)sin(x)=i17234​​,sin(x)=−i17234​​
sin(x)=i17234​​,sin(x)=−i17234​​
sin(x)=i17234​​:No Solution
sin(x)=i17234​​
NoSolution
sin(x)=−i17234​​:No Solution
sin(x)=−i17234​​
NoSolution
Combine all the solutionsNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)-0.5cos(x)=05sin(x)cos(x)=2cos(x)sin(x)=cos^3(x)a=((1+sin^2(x)))/((1-sin^2(x)))solvefor x,b*f=sin^3(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 5cos^2(x)-12sin^2(x)=13 ?

    The general solution for 5cos^2(x)-12sin^2(x)=13 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024