Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(5x)=cos(5+x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(5x)=cos(5+x)

Solution

x=πn+45​,x=45​+2π​+πn,x=32πn​−65​,x=−65​+3π​+32πn​
+1
Degrees
x=71.61972…∘+180∘n,x=161.61972…∘+180∘n,x=−47.74648…∘+120∘n,x=12.25351…∘+120∘n
Solution steps
cos(5x)=cos(5+x)
Subtract cos(5+x) from both sidescos(5x)−cos(5+x)=0
Rewrite using trig identities
−cos(5+x)+cos(5x)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−2sin(25x+5+x​)sin(25x−(5+x)​)
Simplify −2sin(25x+5+x​)sin(25x−(5+x)​):−2sin(26x+5​)sin(24x−5​)
−2sin(25x+5+x​)sin(25x−(5+x)​)
5x+5+x=6x+5
5x+5+x
Group like terms=5x+x+5
Add similar elements: 5x+x=6x=6x+5
=−2sin(26x+5​)sin(25x−(x+5)​)
Expand 5x−(5+x):4x−5
5x−(5+x)
−(5+x):−5−x
−(5+x)
Distribute parentheses=−(5)−(x)
Apply minus-plus rules+(−a)=−a=−5−x
=5x−5−x
Simplify 5x−5−x:4x−5
5x−5−x
Group like terms=5x−x−5
Add similar elements: 5x−x=4x=4x−5
=4x−5
=−2sin(26x+5​)sin(24x−5​)
=−2sin(26x+5​)sin(24x−5​)
−2sin(2−5+4x​)sin(25+6x​)=0
Solving each part separatelysin(2−5+4x​)=0orsin(25+6x​)=0
sin(2−5+4x​)=0:x=πn+45​,x=45​+2π​+πn
sin(2−5+4x​)=0
General solutions for sin(2−5+4x​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2−5+4x​=0+2πn,2−5+4x​=π+2πn
2−5+4x​=0+2πn,2−5+4x​=π+2πn
Solve 2−5+4x​=0+2πn:x=πn+45​
2−5+4x​=0+2πn
0+2πn=2πn2−5+4x​=2πn
Multiply both sides by 2
2−5+4x​=2πn
Multiply both sides by 222(−5+4x)​=2⋅2πn
Simplify−5+4x=4πn
−5+4x=4πn
Move 5to the right side
−5+4x=4πn
Add 5 to both sides−5+4x+5=4πn+5
Simplify4x=4πn+5
4x=4πn+5
Divide both sides by 4
4x=4πn+5
Divide both sides by 444x​=44πn​+45​
Simplifyx=πn+45​
x=πn+45​
Solve 2−5+4x​=π+2πn:x=45​+2π​+πn
2−5+4x​=π+2πn
Multiply both sides by 2
2−5+4x​=π+2πn
Multiply both sides by 222(−5+4x)​=2π+2⋅2πn
Simplify−5+4x=2π+4πn
−5+4x=2π+4πn
Move 5to the right side
−5+4x=2π+4πn
Add 5 to both sides−5+4x+5=2π+4πn+5
Simplify4x=2π+4πn+5
4x=2π+4πn+5
Divide both sides by 4
4x=2π+4πn+5
Divide both sides by 444x​=42π​+44πn​+45​
Simplify
44x​=42π​+44πn​+45​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 42π​+44πn​+45​:45​+2π​+πn
42π​+44πn​+45​
Group like terms=45​+42π​+44πn​
Cancel 42π​:2π​
42π​
Cancel the common factor: 2=2π​
=45​+2π​+44πn​
Divide the numbers: 44​=1=45​+2π​+πn
x=45​+2π​+πn
x=45​+2π​+πn
x=45​+2π​+πn
x=πn+45​,x=45​+2π​+πn
sin(25+6x​)=0:x=32πn​−65​,x=−65​+3π​+32πn​
sin(25+6x​)=0
General solutions for sin(25+6x​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
25+6x​=0+2πn,25+6x​=π+2πn
25+6x​=0+2πn,25+6x​=π+2πn
Solve 25+6x​=0+2πn:x=32πn​−65​
25+6x​=0+2πn
0+2πn=2πn25+6x​=2πn
Multiply both sides by 2
25+6x​=2πn
Multiply both sides by 222(5+6x)​=2⋅2πn
Simplify5+6x=4πn
5+6x=4πn
Move 5to the right side
5+6x=4πn
Subtract 5 from both sides5+6x−5=4πn−5
Simplify6x=4πn−5
6x=4πn−5
Divide both sides by 6
6x=4πn−5
Divide both sides by 666x​=64πn​−65​
Simplifyx=32πn​−65​
x=32πn​−65​
Solve 25+6x​=π+2πn:x=−65​+3π​+32πn​
25+6x​=π+2πn
Multiply both sides by 2
25+6x​=π+2πn
Multiply both sides by 222(5+6x)​=2π+2⋅2πn
Simplify5+6x=2π+4πn
5+6x=2π+4πn
Move 5to the right side
5+6x=2π+4πn
Subtract 5 from both sides5+6x−5=2π+4πn−5
Simplify6x=2π+4πn−5
6x=2π+4πn−5
Divide both sides by 6
6x=2π+4πn−5
Divide both sides by 666x​=62π​+64πn​−65​
Simplify
66x​=62π​+64πn​−65​
Simplify 66x​:x
66x​
Divide the numbers: 66​=1=x
Simplify 62π​+64πn​−65​:−65​+3π​+32πn​
62π​+64πn​−65​
Group like terms=−65​+62π​+64πn​
Cancel 62π​:3π​
62π​
Cancel the common factor: 2=3π​
=−65​+3π​+64πn​
Cancel 64πn​:32πn​
64πn​
Cancel the common factor: 2=32πn​
=−65​+3π​+32πn​
x=−65​+3π​+32πn​
x=−65​+3π​+32πn​
x=−65​+3π​+32πn​
x=32πn​−65​,x=−65​+3π​+32πn​
Combine all the solutionsx=πn+45​,x=45​+2π​+πn,x=32πn​−65​,x=−65​+3π​+32πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6cos^2(x)-7cos(x)-5=0cos(x)=(-3)/(5sin^2(x))5cos^2(x)-12sin^2(x)=13cos^2(x)-0.5cos(x)=05sin(x)cos(x)=2cos(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024