Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(x)+2sin^2(x/2)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(x)+2sin2(2x​)=1

Solution

x=−2⋅0.45227…+4πn,x=2π+2⋅0.45227…+4πn,x=2⋅0.45227…+4πn,x=2π−2⋅0.45227…+4πn
+1
Degrees
x=−51.82729…∘+720∘n,x=411.82729…∘+720∘n,x=51.82729…∘+720∘n,x=308.17270…∘+720∘n
Solution steps
sin2(x)+2sin2(2x​)=1
Subtract 1 from both sidessin2(x)+2sin2(2x​)−1=0
Let: u=2x​sin2(2u)+2sin2(u)−1=0
Rewrite using trig identities
−1+sin2(2u)+2sin2(u)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−sin2(x)=cos2(x)=2sin2(u)−cos2(2u)
−cos2(2u)+2sin2(u)=0
Factor −cos2(2u)+2sin2(u):(2​sin(u)+cos(2u))(2​sin(u)−cos(2u))
−cos2(2u)+2sin2(u)
Rewrite 2sin2(u)−cos2(2u) as (2​sin(u))2−cos2(2u)
2sin2(u)−cos2(2u)
Apply radical rule: a=(a​)22=(2​)2=(2​)2sin2(u)−cos2(2u)
Apply exponent rule: ambm=(ab)m(2​)2sin2(u)=(2​sin(u))2=(2​sin(u))2−cos2(2u)
=(2​sin(u))2−cos2(2u)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​sin(u))2−cos2(2u)=(2​sin(u)+cos(2u))(2​sin(u)−cos(2u))=(2​sin(u)+cos(2u))(2​sin(u)−cos(2u))
(2​sin(u)+cos(2u))(2​sin(u)−cos(2u))=0
Solving each part separately2​sin(u)+cos(2u)=0or2​sin(u)−cos(2u)=0
2​sin(u)+cos(2u)=0:u=arcsin(−4−2​+10​​)+2πn,u=π+arcsin(4−2​+10​​)+2πn
2​sin(u)+cos(2u)=0
Rewrite using trig identities
cos(2u)+sin(u)2​
Use the Double Angle identity: cos(2x)=1−2sin2(x)=1−2sin2(u)+2​sin(u)
1−2sin2(u)+sin(u)2​=0
Solve by substitution
1−2sin2(u)+sin(u)2​=0
Let: sin(u)=u1−2u2+u2​=0
1−2u2+u2​=0:u=−4−2​+10​​,u=42​+10​​
1−2u2+u2​=0
Write in the standard form ax2+bx+c=0−2u2+2​u+1=0
Solve with the quadratic formula
−2u2+2​u+1=0
Quadratic Equation Formula:
For a=−2,b=2​,c=1u1,2​=2(−2)−2​±(2​)2−4(−2)⋅1​​
u1,2​=2(−2)−2​±(2​)2−4(−2)⋅1​​
(2​)2−4(−2)⋅1​=10​
(2​)2−4(−2)⋅1​
Apply rule −(−a)=a=(2​)2+4⋅2⋅1​
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
4⋅2⋅1=8
4⋅2⋅1
Multiply the numbers: 4⋅2⋅1=8=8
=2+8​
Add the numbers: 2+8=10=10​
u1,2​=2(−2)−2​±10​​
Separate the solutionsu1​=2(−2)−2​+10​​,u2​=2(−2)−2​−10​​
u=2(−2)−2​+10​​:−4−2​+10​​
2(−2)−2​+10​​
Remove parentheses: (−a)=−a=−2⋅2−2​+10​​
Multiply the numbers: 2⋅2=4=−4−2​+10​​
Apply the fraction rule: −ba​=−ba​=−4−2​+10​​
u=2(−2)−2​−10​​:42​+10​​
2(−2)−2​−10​​
Remove parentheses: (−a)=−a=−2⋅2−2​−10​​
Multiply the numbers: 2⋅2=4=−4−2​−10​​
Apply the fraction rule: −b−a​=ba​−2​−10​=−(2​+10​)=42​+10​​
The solutions to the quadratic equation are:u=−4−2​+10​​,u=42​+10​​
Substitute back u=sin(u)sin(u)=−4−2​+10​​,sin(u)=42​+10​​
sin(u)=−4−2​+10​​,sin(u)=42​+10​​
sin(u)=−4−2​+10​​:u=arcsin(−4−2​+10​​)+2πn,u=π+arcsin(4−2​+10​​)+2πn
sin(u)=−4−2​+10​​
Apply trig inverse properties
sin(u)=−4−2​+10​​
General solutions for sin(u)=−4−2​+10​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnu=arcsin(−4−2​+10​​)+2πn,u=π+arcsin(4−2​+10​​)+2πn
u=arcsin(−4−2​+10​​)+2πn,u=π+arcsin(4−2​+10​​)+2πn
sin(u)=42​+10​​:No Solution
sin(u)=42​+10​​
−1≤sin(x)≤1NoSolution
Combine all the solutionsu=arcsin(−4−2​+10​​)+2πn,u=π+arcsin(4−2​+10​​)+2πn
2​sin(u)−cos(2u)=0:u=arcsin(4−2​+10​​)+2πn,u=π−arcsin(4−2​+10​​)+2πn
2​sin(u)−cos(2u)=0
Rewrite using trig identities
−cos(2u)+sin(u)2​
Use the Double Angle identity: cos(2x)=1−2sin2(x)=−(1−2sin2(u))+2​sin(u)
−(1−2sin2(u)):−1+2sin2(u)
−(1−2sin2(u))
Distribute parentheses=−(1)−(−2sin2(u))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+2sin2(u)
=−1+2sin2(u)+2​sin(u)
−1+2sin2(u)+sin(u)2​=0
Solve by substitution
−1+2sin2(u)+sin(u)2​=0
Let: sin(u)=u−1+2u2+u2​=0
−1+2u2+u2​=0:u=4−2​+10​​,u=4−2​−10​​
−1+2u2+u2​=0
Write in the standard form ax2+bx+c=02u2+2​u−1=0
Solve with the quadratic formula
2u2+2​u−1=0
Quadratic Equation Formula:
For a=2,b=2​,c=−1u1,2​=2⋅2−2​±(2​)2−4⋅2(−1)​​
u1,2​=2⋅2−2​±(2​)2−4⋅2(−1)​​
(2​)2−4⋅2(−1)​=10​
(2​)2−4⋅2(−1)​
Apply rule −(−a)=a=(2​)2+4⋅2⋅1​
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
4⋅2⋅1=8
4⋅2⋅1
Multiply the numbers: 4⋅2⋅1=8=8
=2+8​
Add the numbers: 2+8=10=10​
u1,2​=2⋅2−2​±10​​
Separate the solutionsu1​=2⋅2−2​+10​​,u2​=2⋅2−2​−10​​
u=2⋅2−2​+10​​:4−2​+10​​
2⋅2−2​+10​​
Multiply the numbers: 2⋅2=4=4−2​+10​​
u=2⋅2−2​−10​​:4−2​−10​​
2⋅2−2​−10​​
Multiply the numbers: 2⋅2=4=4−2​−10​​
The solutions to the quadratic equation are:u=4−2​+10​​,u=4−2​−10​​
Substitute back u=sin(u)sin(u)=4−2​+10​​,sin(u)=4−2​−10​​
sin(u)=4−2​+10​​,sin(u)=4−2​−10​​
sin(u)=4−2​+10​​:u=arcsin(4−2​+10​​)+2πn,u=π−arcsin(4−2​+10​​)+2πn
sin(u)=4−2​+10​​
Apply trig inverse properties
sin(u)=4−2​+10​​
General solutions for sin(u)=4−2​+10​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnu=arcsin(4−2​+10​​)+2πn,u=π−arcsin(4−2​+10​​)+2πn
u=arcsin(4−2​+10​​)+2πn,u=π−arcsin(4−2​+10​​)+2πn
sin(u)=4−2​−10​​:No Solution
sin(u)=4−2​−10​​
−1≤sin(x)≤1NoSolution
Combine all the solutionsu=arcsin(4−2​+10​​)+2πn,u=π−arcsin(4−2​+10​​)+2πn
Combine all the solutionsu=arcsin(−4−2​+10​​)+2πn,u=π+arcsin(4−2​+10​​)+2πn,u=arcsin(4−2​+10​​)+2πn,u=π−arcsin(4−2​+10​​)+2πn
Substitute back u=2x​
2x​=arcsin(−4−2​+10​​)+2πn:x=−2arcsin(410​−2​​)+4πn
2x​=arcsin(−4−2​+10​​)+2πn
Simplify arcsin(−4−2​+10​​)+2πn:−arcsin(410​−2​​)+2πn
arcsin(−4−2​+10​​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−410​−2​​)=−arcsin(410​−2​​)=−arcsin(410​−2​​)+2πn
2x​=−arcsin(410​−2​​)+2πn
Multiply both sides by 2
2x​=−arcsin(410​−2​​)+2πn
Multiply both sides by 222x​=−2arcsin(410​−2​​)+2⋅2πn
Simplify
22x​=−2arcsin(410​−2​​)+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify −2arcsin(410​−2​​)+2⋅2πn:−2arcsin(410​−2​​)+4πn
−2arcsin(410​−2​​)+2⋅2πn
Multiply the numbers: 2⋅2=4=−2arcsin(410​−2​​)+4πn
x=−2arcsin(410​−2​​)+4πn
x=−2arcsin(410​−2​​)+4πn
x=−2arcsin(410​−2​​)+4πn
2x​=π+arcsin(4−2​+10​​)+2πn:x=2π+2arcsin(4−2​+10​​)+4πn
2x​=π+arcsin(4−2​+10​​)+2πn
Multiply both sides by 2
2x​=π+arcsin(4−2​+10​​)+2πn
Multiply both sides by 222x​=2π+2arcsin(4−2​+10​​)+2⋅2πn
Simplify
22x​=2π+2arcsin(4−2​+10​​)+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π+2arcsin(4−2​+10​​)+2⋅2πn:2π+2arcsin(4−2​+10​​)+4πn
2π+2arcsin(4−2​+10​​)+2⋅2πn
Multiply the numbers: 2⋅2=4=2π+2arcsin(410​−2​​)+4πn
x=2π+2arcsin(4−2​+10​​)+4πn
x=2π+2arcsin(4−2​+10​​)+4πn
x=2π+2arcsin(4−2​+10​​)+4πn
2x​=arcsin(4−2​+10​​)+2πn:x=2arcsin(4−2​+10​​)+4πn
2x​=arcsin(4−2​+10​​)+2πn
Multiply both sides by 2
2x​=arcsin(4−2​+10​​)+2πn
Multiply both sides by 222x​=2arcsin(4−2​+10​​)+2⋅2πn
Simplify
22x​=2arcsin(4−2​+10​​)+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2arcsin(4−2​+10​​)+2⋅2πn:2arcsin(4−2​+10​​)+4πn
2arcsin(4−2​+10​​)+2⋅2πn
Multiply the numbers: 2⋅2=4=2arcsin(410​−2​​)+4πn
x=2arcsin(4−2​+10​​)+4πn
x=2arcsin(4−2​+10​​)+4πn
x=2arcsin(4−2​+10​​)+4πn
2x​=π−arcsin(4−2​+10​​)+2πn:x=2π−2arcsin(4−2​+10​​)+4πn
2x​=π−arcsin(4−2​+10​​)+2πn
Multiply both sides by 2
2x​=π−arcsin(4−2​+10​​)+2πn
Multiply both sides by 222x​=2π−2arcsin(4−2​+10​​)+2⋅2πn
Simplify
22x​=2π−2arcsin(4−2​+10​​)+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π−2arcsin(4−2​+10​​)+2⋅2πn:2π−2arcsin(4−2​+10​​)+4πn
2π−2arcsin(4−2​+10​​)+2⋅2πn
Multiply the numbers: 2⋅2=4=2π−2arcsin(410​−2​​)+4πn
x=2π−2arcsin(4−2​+10​​)+4πn
x=2π−2arcsin(4−2​+10​​)+4πn
x=2π−2arcsin(4−2​+10​​)+4πn
x=−2arcsin(410​−2​​)+4πn,x=2π+2arcsin(4−2​+10​​)+4πn,x=2arcsin(4−2​+10​​)+4πn,x=2π−2arcsin(4−2​+10​​)+4πn
Show solutions in decimal formx=−2⋅0.45227…+4πn,x=2π+2⋅0.45227…+4πn,x=2⋅0.45227…+4πn,x=2π−2⋅0.45227…+4πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(a)=0.78sin(x)-4csc(x)=06cos^2(x)+5sin(x)-2=0(tan^2(b)+1)/(tan(b))=csc^2(b)solvefor x,r+s+6t=cos(2x+y)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024