Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(1+x)+arctan(1-x)=arctan(1/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(1+x)+arctan(1−x)=arctan(21​)

Solution

x=2,x=−2
Solution steps
arctan(1+x)+arctan(1−x)=arctan(21​)
Rewrite using trig identities
arctan(1+x)+arctan(1−x)
Use the Sum to Product identity: arctan(s)+arctan(t)=arctan(1−sts+t​)=arctan(1−(1+x)(1−x)1+x+1−x​)
arctan(1−(1+x)(1−x)1+x+1−x​)=arctan(21​)
Apply trig inverse properties
arctan(1−(1+x)(1−x)1+x+1−x​)=arctan(21​)
arctan(x)=a⇒x=tan(a)1−(1+x)(1−x)1+x+1−x​=tan(arctan(21​))
tan(arctan(21​))=21​
tan(arctan(21​))
Rewrite using trig identities:tan(arctan(21​))=21​
Use the following identity: tan(arctan(x))=x
=21​
=21​
1−(1+x)(1−x)1+x+1−x​=21​
1−(1+x)(1−x)1+x+1−x​=21​
Solve 1−(1+x)(1−x)1+x+1−x​=21​:x=2,x=−2
1−(1+x)(1−x)1+x+1−x​=21​
Cross multiply
1−(1+x)(1−x)1+x+1−x​=21​
Simplify 1−(1+x)(1−x)1+x+1−x​:x22​
1−(1+x)(1−x)1+x+1−x​
1+x+1−x=2
1+x+1−x
Group like terms=x−x+1+1
Add similar elements: x−x=0=1+1
Add the numbers: 1+1=2=2
=1−(x+1)(−x+1)2​
Expand 1−(1+x)(1−x):x2
1−(1+x)(1−x)
Expand −(1+x)(1−x):−1+x2
Expand (1+x)(1−x):1−x2
(1+x)(1−x)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=1,b=x=12−x2
Apply rule 1a=112=1=1−x2
=−(1−x2)
Distribute parentheses=−(1)−(−x2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+x2
=1−1+x2
1−1=0=x2
=x22​
x22​=21​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c2⋅2=x2⋅1
Simplify
2⋅2=x2⋅1
Simplify 2⋅2:4
2⋅2
Multiply the numbers: 2⋅2=4=4
Simplify x2⋅1:x2
x2⋅1
Multiply: x2⋅1=x2=x2
4=x2
4=x2
4=x2
Solve 4=x2:x=2,x=−2
4=x2
Switch sidesx2=4
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=4​,x=−4​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
−4​=−2
−4​
Factor the number: 4=22=−22​
Apply radical rule: a2​=a,a≥022​=−2=−2
x=2,x=−2
x=2,x=−2
Verify Solutions
Find undefined (singularity) points:x=0
Take the denominator(s) of 1−(1+x)(1−x)1+x+1−x​ and compare to zero
Solve 1−(1+x)(1−x)=0:x=0
1−(1+x)(1−x)=0
Expand 1−(1+x)(1−x):x2
1−(1+x)(1−x)
Expand −(1+x)(1−x):−1+x2
Expand (1+x)(1−x):1−x2
(1+x)(1−x)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=1,b=x=12−x2
Apply rule 1a=112=1=1−x2
=−(1−x2)
Distribute parentheses=−(1)−(−x2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+x2
=1−1+x2
1−1=0=x2
x2=0
Solve with the quadratic formula
x2=0
Quadratic Equation Formula:
For a=1,b=0,c=0x1,2​=2⋅1−0±02−4⋅1⋅0​​
x1,2​=2⋅1−0±02−4⋅1⋅0​​
02−4⋅1⋅0=0
02−4⋅1⋅0
Apply rule 0a=002=0=0−4⋅1⋅0
Apply rule 0⋅a=0=0−0
Subtract the numbers: 0−0=0=0
x1,2​=2⋅1−0±0​​
x=2⋅1−0​
2⋅1−0​=0
2⋅1−0​
=2⋅10​
Multiply the numbers: 2⋅1=2=20​
Apply rule a0​=0,a=0=0
x=0
The solution to the quadratic equation is:x=0
The following points are undefinedx=0
Combine undefined points with solutions:
x=2,x=−2
x=2,x=−2
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(1+x)+arctan(1−x)=arctan(21​)
Remove the ones that don't agree with the equation.
Check the solution 2:True
2
Plug in n=12
For arctan(1+x)+arctan(1−x)=arctan(21​)plug inx=2arctan(1+2)+arctan(1−2)=arctan(21​)
Refine0.46364…=0.46364…
⇒True
Check the solution −2:True
−2
Plug in n=1−2
For arctan(1+x)+arctan(1−x)=arctan(21​)plug inx=−2arctan(1−2)+arctan(1−(−2))=arctan(21​)
Refine0.46364…=0.46364…
⇒True
x=2,x=−2

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-4cos^2(x)=0sin^2(x)-4sin^2(x)+7cos^2(x)=0(sin(x))(cos(x))=0sin^2(x)-15sin(x)cos(x)+50cos^2(x)=0cot(x)=sin^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(1+x)+arctan(1-x)=arctan(1/2) ?

    The general solution for arctan(1+x)+arctan(1-x)=arctan(1/2) is x=2,x=-2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024