Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^5(a)=16sin^5(a)-20sin^3(a)+5sin(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin5(a)=16sin5(a)−20sin3(a)+5sin(a)

Solution

a=2πn,a=π+2πn,a=−0.61547…+2πn,a=π+0.61547…+2πn,a=0.61547…+2πn,a=π−0.61547…+2πn,a=23π​+2πn,a=2π​+2πn
+1
Degrees
a=0∘+360∘n,a=180∘+360∘n,a=−35.26438…∘+360∘n,a=215.26438…∘+360∘n,a=35.26438…∘+360∘n,a=144.73561…∘+360∘n,a=270∘+360∘n,a=90∘+360∘n
Solution steps
sin5(a)=16sin5(a)−20sin3(a)+5sin(a)
Solve by substitution
sin5(a)=16sin5(a)−20sin3(a)+5sin(a)
Let: sin(a)=uu5=16u5−20u3+5u
u5=16u5−20u3+5u:u=0,u=−33​​,u=33​​,u=−1,u=1
u5=16u5−20u3+5u
Switch sides16u5−20u3+5u=u5
Move u5to the left side
16u5−20u3+5u=u5
Subtract u5 from both sides16u5−20u3+5u−u5=u5−u5
Simplify15u5−20u3+5u=0
15u5−20u3+5u=0
Factor 15u5−20u3+5u:5u(3​u+1)(3​u−1)(u+1)(u−1)
15u5−20u3+5u
Factor out common term 5u:5u(3u4−4u2+1)
15u5−20u3+5u
Apply exponent rule: ab+c=abacu3=u2u=15u4u−20u2u+5u
Rewrite 20 as 5⋅4Rewrite 15 as 5⋅3=5⋅3u4u−5⋅4u2u+5u
Factor out common term 5u=5u(3u4−4u2+1)
=5u(3u4−4u2+1)
Factor 3u4−4u2+1:(3​u+1)(3​u−1)(u+1)(u−1)
3u4−4u2+1
Let u=u2=3u2−4u+1
Factor 3u2−4u+1:(3u−1)(u−1)
3u2−4u+1
Break the expression into groups
3u2−4u+1
Definition
Factors of 3:1,3
3
Divisors (Factors)
Find the Prime factors of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Add 1 1
The factors of 31,3
Negative factors of 3:−1,−3
Multiply the factors by −1 to get the negative factors−1,−3
For every two factors such that u∗v=3,check if u+v=−4
Check u=1,v=3:u∗v=3,u+v=4⇒FalseCheck u=−1,v=−3:u∗v=3,u+v=−4⇒True
u=−1,v=−3
Group into (ax2+ux)+(vx+c)(3u2−u)+(−3u+1)
=(3u2−u)+(−3u+1)
Factor out ufrom 3u2−u:u(3u−1)
3u2−u
Apply exponent rule: ab+c=abacu2=uu=3uu−u
Factor out common term u=u(3u−1)
Factor out −1from −3u+1:−(3u−1)
−3u+1
Factor out common term −1=−(3u−1)
=u(3u−1)−(3u−1)
Factor out common term 3u−1=(3u−1)(u−1)
=(3u−1)(u−1)
Substitute back u=u2=(u2−1)(3u2−1)
Factor 3u2−1:(3​u+1)(3​u−1)
3u2−1
Rewrite 3u2−1 as (3​u)2−12
3u2−1
Apply radical rule: a=(a​)23=(3​)2=(3​)2u2−1
Rewrite 1 as 12=(3​)2u2−12
Apply exponent rule: ambm=(ab)m(3​)2u2=(3​u)2=(3​u)2−12
=(3​u)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3​u)2−12=(3​u+1)(3​u−1)=(3​u+1)(3​u−1)
=(3​u+1)(3​u−1)(u2−1)
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(3​u+1)(3​u−1)(u+1)(u−1)
=5u(3​u+1)(3​u−1)(u+1)(u−1)
5u(3​u+1)(3​u−1)(u+1)(u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or3​u+1=0or3​u−1=0oru+1=0oru−1=0
Solve 3​u+1=0:u=−33​​
3​u+1=0
Move 1to the right side
3​u+1=0
Subtract 1 from both sides3​u+1−1=0−1
Simplify3​u=−1
3​u=−1
Divide both sides by 3​
3​u=−1
Divide both sides by 3​3​3​u​=3​−1​
Simplify
3​3​u​=3​−1​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
u=−33​​
u=−33​​
u=−33​​
Solve 3​u−1=0:u=33​​
3​u−1=0
Move 1to the right side
3​u−1=0
Add 1 to both sides3​u−1+1=0+1
Simplify3​u=1
3​u=1
Divide both sides by 3​
3​u=1
Divide both sides by 3​3​3​u​=3​1​
Simplify
3​3​u​=3​1​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
u=33​​
u=33​​
u=33​​
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
The solutions areu=0,u=−33​​,u=33​​,u=−1,u=1
Substitute back u=sin(a)sin(a)=0,sin(a)=−33​​,sin(a)=33​​,sin(a)=−1,sin(a)=1
sin(a)=0,sin(a)=−33​​,sin(a)=33​​,sin(a)=−1,sin(a)=1
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
General solutions for sin(a)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
Solve a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
sin(a)=−33​​:a=arcsin(−33​​)+2πn,a=π+arcsin(33​​)+2πn
sin(a)=−33​​
Apply trig inverse properties
sin(a)=−33​​
General solutions for sin(a)=−33​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πna=arcsin(−33​​)+2πn,a=π+arcsin(33​​)+2πn
a=arcsin(−33​​)+2πn,a=π+arcsin(33​​)+2πn
sin(a)=33​​:a=arcsin(33​​)+2πn,a=π−arcsin(33​​)+2πn
sin(a)=33​​
Apply trig inverse properties
sin(a)=33​​
General solutions for sin(a)=33​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πna=arcsin(33​​)+2πn,a=π−arcsin(33​​)+2πn
a=arcsin(33​​)+2πn,a=π−arcsin(33​​)+2πn
sin(a)=−1:a=23π​+2πn
sin(a)=−1
General solutions for sin(a)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=23π​+2πn
a=23π​+2πn
sin(a)=1:a=2π​+2πn
sin(a)=1
General solutions for sin(a)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=2π​+2πn
a=2π​+2πn
Combine all the solutionsa=2πn,a=π+2πn,a=arcsin(−33​​)+2πn,a=π+arcsin(33​​)+2πn,a=arcsin(33​​)+2πn,a=π−arcsin(33​​)+2πn,a=23π​+2πn,a=2π​+2πn
Show solutions in decimal forma=2πn,a=π+2πn,a=−0.61547…+2πn,a=π+0.61547…+2πn,a=0.61547…+2πn,a=π−0.61547…+2πn,a=23π​+2πn,a=2π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(b)= 1/2cos^2(x)-cos(x)+1=sin^2(x)sin^{22}(x)=4sin^2(x)cos^2(x)sin(x)=(4.1)/(7.1)(1+cos^2(a))sin^2(a)=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024