Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6cos^3(x)+cos^2(x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6cos3(x)+cos2(x)−1=0

Solution

x=3π​+2πn,x=35π​+2πn
+1
Degrees
x=60∘+360∘n,x=300∘+360∘n
Solution steps
6cos3(x)+cos2(x)−1=0
Solve by substitution
6cos3(x)+cos2(x)−1=0
Let: cos(x)=u6u3+u2−1=0
6u3+u2−1=0:u=21​,u=−31​+i32​​,u=−31​−i32​​
6u3+u2−1=0
Factor 6u3+u2−1:(2u−1)(3u2+2u+1)
6u3+u2−1
Use the rational root theorem
a0​=1,an​=6
The dividers of a0​:1,The dividers of an​:1,2,3,6
Therefore, check the following rational numbers:±1,2,3,61​
21​ is a root of the expression, so factor out 2u−1
=(2u−1)2u−16u3+u2−1​
2u−16u3+u2−1​=3u2+2u+1
2u−16u3+u2−1​
Divide 2u−16u3+u2−1​:2u−16u3+u2−1​=3u2+2u−14u2−1​
Divide the leading coefficients of the numerator 6u3+u2−1
and the divisor 2u−1:2u6u3​=3u2
Quotient=3u2
Multiply 2u−1 by 3u2:6u3−3u2Subtract 6u3−3u2 from 6u3+u2−1 to get new remainderRemainder=4u2−1
Therefore2u−16u3+u2−1​=3u2+2u−14u2−1​
=3u2+2u−14u2−1​
Divide 2u−14u2−1​:2u−14u2−1​=2u+2u−12u−1​
Divide the leading coefficients of the numerator 4u2−1
and the divisor 2u−1:2u4u2​=2u
Quotient=2u
Multiply 2u−1 by 2u:4u2−2uSubtract 4u2−2u from 4u2−1 to get new remainderRemainder=2u−1
Therefore2u−14u2−1​=2u+2u−12u−1​
=3u2+2u+2u−12u−1​
Divide 2u−12u−1​:2u−12u−1​=1
Divide the leading coefficients of the numerator 2u−1
and the divisor 2u−1:2u2u​=1
Quotient=1
Multiply 2u−1 by 1:2u−1Subtract 2u−1 from 2u−1 to get new remainderRemainder=0
Therefore2u−12u−1​=1
=3u2+2u+1
=(2u−1)(3u2+2u+1)
(2u−1)(3u2+2u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=02u−1=0or3u2+2u+1=0
Solve 2u−1=0:u=21​
2u−1=0
Move 1to the right side
2u−1=0
Add 1 to both sides2u−1+1=0+1
Simplify2u=1
2u=1
Divide both sides by 2
2u=1
Divide both sides by 222u​=21​
Simplifyu=21​
u=21​
Solve 3u2+2u+1=0:u=−31​+i32​​,u=−31​−i32​​
3u2+2u+1=0
Solve with the quadratic formula
3u2+2u+1=0
Quadratic Equation Formula:
For a=3,b=2,c=1u1,2​=2⋅3−2±22−4⋅3⋅1​​
u1,2​=2⋅3−2±22−4⋅3⋅1​​
Simplify 22−4⋅3⋅1​:22​i
22−4⋅3⋅1​
Multiply the numbers: 4⋅3⋅1=12=22−12​
Apply imaginary number rule: −a​=ia​=i12−22​
−22+12​=22​
−22+12​
22=4=−4+12​
Add/Subtract the numbers: −4+12=8=8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​i
u1,2​=2⋅3−2±22​i​
Separate the solutionsu1​=2⋅3−2+22​i​,u2​=2⋅3−2−22​i​
u=2⋅3−2+22​i​:−31​+i32​​
2⋅3−2+22​i​
Multiply the numbers: 2⋅3=6=6−2+22​i​
Factor −2+22​i:2(−1+2​i)
−2+22​i
Rewrite as=−2⋅1+22​i
Factor out common term 2=2(−1+2​i)
=62(−1+2​i)​
Cancel the common factor: 2=3−1+2​i​
Rewrite 3−1+2​i​ in standard complex form: −31​+32​​i
3−1+2​i​
Apply the fraction rule: ca±b​=ca​±cb​3−1+2​i​=−31​+32​i​=−31​+32​i​
=−31​+32​​i
u=2⋅3−2−22​i​:−31​−i32​​
2⋅3−2−22​i​
Multiply the numbers: 2⋅3=6=6−2−22​i​
Factor −2−22​i:−2(1+2​i)
−2−22​i
Rewrite as=−2⋅1−22​i
Factor out common term 2=−2(1+2​i)
=−62(1+2​i)​
Cancel the common factor: 2=−31+2​i​
Rewrite −31+2​i​ in standard complex form: −31​−32​​i
−31+2​i​
Apply the fraction rule: ca±b​=ca​±cb​31+2​i​=−(31​)−(32​i​)=−(31​)−(32​i​)
Remove parentheses: (a)=a=−31​−32​i​
=−31​−32​​i
The solutions to the quadratic equation are:u=−31​+i32​​,u=−31​−i32​​
The solutions areu=21​,u=−31​+i32​​,u=−31​−i32​​
Substitute back u=cos(x)cos(x)=21​,cos(x)=−31​+i32​​,cos(x)=−31​−i32​​
cos(x)=21​,cos(x)=−31​+i32​​,cos(x)=−31​−i32​​
cos(x)=21​:x=3π​+2πn,x=35π​+2πn
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
cos(x)=−31​+i32​​:No Solution
cos(x)=−31​+i32​​
NoSolution
cos(x)=−31​−i32​​:No Solution
cos(x)=−31​−i32​​
NoSolution
Combine all the solutionsx=3π​+2πn,x=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4tan^2(x)+12tan(x)-27=0sin^2(x)-cos(x)= 1/4cos^4(a)=3+4cos^2(a)+cos^4(a)cos^4(t)=18cos^2(x)-12sin(x)-12=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 6cos^3(x)+cos^2(x)-1=0 ?

    The general solution for 6cos^3(x)+cos^2(x)-1=0 is x= pi/3+2pin,x=(5pi)/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024