Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^2(x)-sin(x)=tan^2(x)sin^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(x)−sin(x)=tan2(x)sin2(x)

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
tan2(x)−sin(x)=tan2(x)sin2(x)
Subtract tan2(x)sin2(x) from both sidestan2(x)−sin(x)−tan2(x)sin2(x)=0
Express with sin, cos
−sin(x)+tan2(x)−sin2(x)tan2(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(x)+(cos(x)sin(x)​)2−sin2(x)(cos(x)sin(x)​)2
Simplify −sin(x)+(cos(x)sin(x)​)2−sin2(x)(cos(x)sin(x)​)2:cos2(x)−cos2(x)sin(x)+sin2(x)−sin4(x)​
−sin(x)+(cos(x)sin(x)​)2−sin2(x)(cos(x)sin(x)​)2
(cos(x)sin(x)​)2=cos2(x)sin2(x)​
(cos(x)sin(x)​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)sin2(x)​
sin2(x)(cos(x)sin(x)​)2=cos2(x)sin4(x)​
sin2(x)(cos(x)sin(x)​)2
(cos(x)sin(x)​)2=cos2(x)sin2(x)​
(cos(x)sin(x)​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)sin2(x)​
=cos2(x)sin2(x)​sin2(x)
Multiply fractions: a⋅cb​=ca⋅b​=cos2(x)sin2(x)sin2(x)​
sin2(x)sin2(x)=sin4(x)
sin2(x)sin2(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin2(x)=sin2+2(x)=sin2+2(x)
Add the numbers: 2+2=4=sin4(x)
=cos2(x)sin4(x)​
=−sin(x)+cos2(x)sin2(x)​−cos2(x)sin4(x)​
Combine the fractions cos2(x)sin2(x)​−cos2(x)sin4(x)​:cos2(x)sin2(x)−sin4(x)​
Apply rule ca​±cb​=ca±b​=cos2(x)sin2(x)−sin4(x)​
=−sin(x)+cos2(x)sin2(x)−sin4(x)​
Convert element to fraction: sin(x)=cos2(x)sin(x)cos2(x)​=−cos2(x)sin(x)cos2(x)​+cos2(x)sin2(x)−sin4(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)−sin(x)cos2(x)+sin2(x)−sin4(x)​
=cos2(x)−cos2(x)sin(x)+sin2(x)−sin4(x)​
cos2(x)sin2(x)−sin4(x)−cos2(x)sin(x)​=0
g(x)f(x)​=0⇒f(x)=0sin2(x)−sin4(x)−cos2(x)sin(x)=0
Factor sin2(x)−sin4(x)−cos2(x)sin(x):sin(x)(sin(x)−sin3(x)−cos2(x))
sin2(x)−sin4(x)−cos2(x)sin(x)
Apply exponent rule: ab+c=abacsin4(x)=sin(x)sin3(x),sin2(x)=sin(x)sin(x)=sin(x)sin(x)−sin(x)sin3(x)−sin(x)cos2(x)
Factor out common term sin(x)=sin(x)(sin(x)−sin3(x)−cos2(x))
sin(x)(sin(x)−sin3(x)−cos2(x))=0
Solving each part separatelysin(x)=0orsin(x)−sin3(x)−cos2(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)−sin3(x)−cos2(x)=0:x=2π​+2πn,x=23π​+2πn
sin(x)−sin3(x)−cos2(x)=0
Rewrite using trig identities
−cos2(x)+sin(x)−sin3(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(1−sin2(x))+sin(x)−sin3(x)
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=−1+sin2(x)+sin(x)−sin3(x)
−1+sin(x)+sin2(x)−sin3(x)=0
Solve by substitution
−1+sin(x)+sin2(x)−sin3(x)=0
Let: sin(x)=u−1+u+u2−u3=0
−1+u+u2−u3=0:u=1,u=−1
−1+u+u2−u3=0
Write in the standard form an​xn+…+a1​x+a0​=0−u3+u2+u−1=0
Factor −u3+u2+u−1:−(u−1)2(u+1)
−u3+u2+u−1
Factor out common term −1=−(u3−u2−u+1)
Factor u3−u2−u+1:(u−1)(u+1)(u−1)
u3−u2−u+1
=(u3−u2)+(−u+1)
Factor out −1from −u+1:−(u−1)
−u+1
Factor out common term −1=−(u−1)
Factor out u2from u3−u2:u2(u−1)
u3−u2
Apply exponent rule: ab+c=abacu3=uu2=uu2−u2
Factor out common term u2=u2(u−1)
=−(u−1)+u2(u−1)
Factor out common term u−1=(u−1)(u2−1)
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(u−1)(u+1)(u−1)
=−(u−1)(u+1)(u−1)
Refine=−(u−1)2(u+1)
−(u−1)2(u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−1=0oru+1=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
The solutions areu=1,u=−1
Substitute back u=sin(x)sin(x)=1,sin(x)=−1
sin(x)=1,sin(x)=−1
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=−1:x=23π​+2πn
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=2π​+2πn,x=23π​+2πn
Since the equation is undefined for:2π​+2πn,23π​+2πnx=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3cos(a)-1=0tan^2(x)+tan(x)+cot(x)+cot^2(x)=4tan(a)=0cos^2(x)+3|cos(x)|-1=0cos^5(x)=sin(75)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan^2(x)-sin(x)=tan^2(x)sin^2(x) ?

    The general solution for tan^2(x)-sin(x)=tan^2(x)sin^2(x) is x=2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024