Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1+cos^2(a)=3sin(x)cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1+cos2(a)=3sin(x)cos(x)

Solution

x=2arcsin(−3−2cos2(a)−2​)​+πn,x=2π​+2arcsin(3−2cos2(a)−2​)​+πn
Solution steps
1+cos2(a)=3sin(x)cos(x)
Subtract 3sin(x)cos(x) from both sides1+cos2(a)−3sin(x)cos(x)=0
Rewrite using trig identities
1+cos2(a)−3sin(x)cos(x)
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=1+cos2(a)−3⋅2sin(2x)​
1+cos2(a)−3⋅2sin(2x)​=0
Move cos2(a)to the right side
1+cos2(a)−3⋅2sin(2x)​=0
Subtract cos2(a) from both sides1+cos2(a)−3⋅2sin(2x)​−cos2(a)=0−cos2(a)
Simplify1−3⋅2sin(2x)​=−cos2(a)
1−3⋅2sin(2x)​=−cos2(a)
Move 1to the right side
1−3⋅2sin(2x)​=−cos2(a)
Subtract 1 from both sides1−3⋅2sin(2x)​−1=−cos2(a)−1
Simplify−3⋅2sin(2x)​=−cos2(a)−1
−3⋅2sin(2x)​=−cos2(a)−1
Refine −3⋅2sin(2x)​:−23sin(2x)​
−3⋅2sin(2x)​
Multiply fractions: a⋅cb​=ca⋅b​=−2sin(2x)⋅3​
−23sin(2x)​=−cos2(a)−1
Multiply both sides by 2
−23sin(2x)​=−cos2(a)−1
Multiply both sides by 2−23sin(2x)​⋅2=−cos2(a)⋅2−1⋅2
Simplify
−23sin(2x)​⋅2=−cos2(a)⋅2−1⋅2
Simplify −23sin(2x)​⋅2:−3sin(2x)
−23sin(2x)​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=−23sin(2x)⋅2​
Cancel the common factor: 2=−3sin(2x)
Simplify cos2(a)⋅2:2cos2(a)
cos2(a)⋅2
Apply the commutative law: cos2(a)⋅2=2cos2(a)2cos2(a)
Simplify −1⋅2:−2
−1⋅2
Multiply the numbers: 1⋅2=2=−2
−3sin(2x)=−2cos2(a)−2
−3sin(2x)=−2cos2(a)−2
−3sin(2x)=−2cos2(a)−2
Divide both sides by −3
−3sin(2x)=−2cos2(a)−2
Divide both sides by −3−3−3sin(2x)​=−−32cos2(a)​−−32​
Simplify
−3−3sin(2x)​=−−32cos2(a)​−−32​
Simplify −3−3sin(2x)​:sin(2x)
−3−3sin(2x)​
Apply the fraction rule: −b−a​=ba​=33sin(2x)​
Divide the numbers: 33​=1=sin(2x)
Simplify −−32cos2(a)​−−32​:−3−2cos2(a)−2​
−−32cos2(a)​−−32​
Apply rule ca​±cb​=ca±b​=−3−2cos2(a)−2​
Apply the fraction rule: −ba​=−ba​=−3−2cos2(a)−2​
sin(2x)=−3−2cos2(a)−2​
sin(2x)=−3−2cos2(a)−2​
sin(2x)=−3−2cos2(a)−2​
Apply trig inverse properties
sin(2x)=−3−2cos2(a)−2​
General solutions for sin(2x)=−3−2cos2(a)−2​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πn2x=arcsin(−3−2cos2(a)−2​)+2πn,2x=π+arcsin(3−2cos2(a)−2​)+2πn
2x=arcsin(−3−2cos2(a)−2​)+2πn,2x=π+arcsin(3−2cos2(a)−2​)+2πn
Solve 2x=arcsin(−3−2cos2(a)−2​)+2πn:x=2arcsin(−3−2cos2(a)−2​)​+πn
2x=arcsin(−3−2cos2(a)−2​)+2πn
Divide both sides by 2
2x=arcsin(−3−2cos2(a)−2​)+2πn
Divide both sides by 222x​=2arcsin(−3−2cos2(a)−2​)​+22πn​
Simplifyx=2arcsin(−3−2cos2(a)−2​)​+πn
x=2arcsin(−3−2cos2(a)−2​)​+πn
Solve 2x=π+arcsin(3−2cos2(a)−2​)+2πn:x=2π​+2arcsin(3−2cos2(a)−2​)​+πn
2x=π+arcsin(3−2cos2(a)−2​)+2πn
Divide both sides by 2
2x=π+arcsin(3−2cos2(a)−2​)+2πn
Divide both sides by 222x​=2π​+2arcsin(3−2cos2(a)−2​)​+22πn​
Simplifyx=2π​+2arcsin(3−2cos2(a)−2​)​+πn
x=2π​+2arcsin(3−2cos2(a)−2​)​+πn
x=2arcsin(−3−2cos2(a)−2​)​+πn,x=2π​+2arcsin(3−2cos2(a)−2​)​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3cos(x)+sin(x)=cos(x)-2sin(x)2cos(x)=cos^2(x)tan^2(x)-sin(x)=tan^2(x)sin^2(x)3cos(a)-1=0tan^2(x)+tan(x)+cot(x)+cot^2(x)=4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024