Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^2(45-a)=1-sin^2(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin2(45∘−a)=1−sin2(a)

Solution

a=360∘n,a=180∘+360∘n,a=1.10714…+180∘n
+1
Radians
a=0+2πn,a=π+2πn,a=1.10714…+πn
Solution steps
2sin2(45∘−a)=1−sin2(a)
Rewrite using trig identities
2sin2(45∘−a)=1−sin2(a)
Rewrite using trig identities
sin(45∘−a)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(45∘)cos(a)−cos(45∘)sin(a)
Simplify sin(45∘)cos(a)−cos(45∘)sin(a):22​cos(a)−2​sin(a)​
sin(45∘)cos(a)−cos(45∘)sin(a)
sin(45∘)cos(a)=22​cos(a)​
sin(45∘)cos(a)
Simplify sin(45∘):22​​
sin(45∘)
Use the following trivial identity:sin(45∘)=22​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(a)​
cos(45∘)sin(a)=22​sin(a)​
cos(45∘)sin(a)
Simplify cos(45∘):22​​
cos(45∘)
Use the following trivial identity:cos(45∘)=22​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(a)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(a)​
=22​cos(a)​−22​sin(a)​
Apply rule ca​±cb​=ca±b​=22​cos(a)−2​sin(a)​
=22​cos(a)−2​sin(a)​
2(22​cos(a)−2​sin(a)​)2=1−sin2(a)
Simplify 2(22​cos(a)−2​sin(a)​)2:(cos(a)−sin(a))2
2(22​cos(a)−2​sin(a)​)2
(22​cos(a)−2​sin(a)​)2=2(cos(a)−sin(a))2​
(22​cos(a)−2​sin(a)​)2
22​cos(a)−2​sin(a)​=2​cos(a)−sin(a)​
22​cos(a)−2​sin(a)​
Factor out common term 2​=22​(cos(a)−sin(a))​
Cancel 22​(cos(a)−sin(a))​:2​cos(a)−sin(a)​
22​(cos(a)−sin(a))​
Apply radical rule: 2​=221​=2221​(cos(a)−sin(a))​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​cos(a)−sin(a)​
Subtract the numbers: 1−21​=21​=221​cos(a)−sin(a)​
Apply radical rule: 221​=2​=2​cos(a)−sin(a)​
=2​cos(a)−sin(a)​
=(2​cos(a)−sin(a)​)2
Apply exponent rule: (ba​)c=bcac​=(2​)2(cos(a)−sin(a))2​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2(cos(a)−sin(a))2​
=2⋅2(cos(a)−sin(a))2​
Multiply fractions: a⋅cb​=ca⋅b​=2(cos(a)−sin(a))2⋅2​
Cancel the common factor: 2=(cos(a)−sin(a))2
(cos(a)−sin(a))2=1−sin2(a)
(cos(a)−sin(a))2=1−sin2(a)
Subtract 1−sin2(a) from both sidescos2(a)−2cos(a)sin(a)+2sin2(a)−1=0
Rewrite using trig identities
−1+cos2(a)+2sin2(a)−2cos(a)sin(a)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−cos2(x)=sin2(x)=2sin2(a)−2cos(a)sin(a)−sin2(a)
Simplify=sin2(a)−2cos(a)sin(a)
sin2(a)−2cos(a)sin(a)=0
Factor sin2(a)−2cos(a)sin(a):sin(a)(sin(a)−2cos(a))
sin2(a)−2cos(a)sin(a)
Apply exponent rule: ab+c=abacsin2(a)=sin(a)sin(a)=sin(a)sin(a)−2sin(a)cos(a)
Factor out common term sin(a)=sin(a)(sin(a)−2cos(a))
sin(a)(sin(a)−2cos(a))=0
Solving each part separatelysin(a)=0orsin(a)−2cos(a)=0
sin(a)=0:a=360∘n,a=180∘+360∘n
sin(a)=0
General solutions for sin(a)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=0+360∘n,a=180∘+360∘n
a=0+360∘n,a=180∘+360∘n
Solve a=0+360∘n:a=360∘n
a=0+360∘n
0+360∘n=360∘na=360∘n
a=360∘n,a=180∘+360∘n
sin(a)−2cos(a)=0:a=arctan(2)+180∘n
sin(a)−2cos(a)=0
Rewrite using trig identities
sin(a)−2cos(a)=0
Divide both sides by cos(a),cos(a)=0cos(a)sin(a)−2cos(a)​=cos(a)0​
Simplifycos(a)sin(a)​−2=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(a)−2=0
tan(a)−2=0
Move 2to the right side
tan(a)−2=0
Add 2 to both sidestan(a)−2+2=0+2
Simplifytan(a)=2
tan(a)=2
Apply trig inverse properties
tan(a)=2
General solutions for tan(a)=2tan(x)=a⇒x=arctan(a)+180∘na=arctan(2)+180∘n
a=arctan(2)+180∘n
Combine all the solutionsa=360∘n,a=180∘+360∘n,a=arctan(2)+180∘n
Show solutions in decimal forma=360∘n,a=180∘+360∘n,a=1.10714…+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(2cos(a)+1)(2cos(a)-1)=2cos^2(a)+1tan^2(x)cot(x)=12sin^2(x)-cos^2(x)-4sin(x)+2=06cos^2(x)-5sin(x)+5=01+cos^2(a)=3sin(x)cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin^2(45-a)=1-sin^2(a) ?

    The general solution for 2sin^2(45-a)=1-sin^2(a) is a=360n,a=180+360n,a=1.10714…+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024