Lời Giải
Máy Tính Tích PhânMáy Tính Đạo HàmMáy Tính Đại SốMáy Tính Ma TrậnHơn...
Vẽ đồ thị
Biểu đồ đườngĐồ thị hàm mũĐồ thị bậc haiĐồ thị sinHơn...
Máy tính
Máy tính BMIMáy tính lãi képMáy tính tỷ lệ phần trămMáy tính gia tốcHơn...
Hình học
Máy tính Định Lý PytagoMáy Tính Diện Tích Hình TrònMáy tính tam giác cânMáy tính tam giácHơn...
Công cụ
Sổ ghi chépNhómBảng Ghi ChúBảng tínhThực HànhXác thực
vi
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Phổ biến Lượng giác >

cos^3(x)=cos(2x+x)

  • Tiền Đại Số
  • Đại số
  • Tiền Giải Tích
  • Giải tích
  • Các hàm số
  • Đại số tuyến tính
  • Lượng giác
  • Thống kê
  • Hóa học
  • Quy đổi

Lời Giải

cos3(x)=cos(2x+x)

Lời Giải

x=2π​+2πn,x=23π​+2πn,x=π+2πn,x=2πn
+1
Độ
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘n,x=0∘+360∘n
Các bước giải pháp
cos3(x)=cos(2x+x)
Trừ cos(2x+x) cho cả hai bêncos3(x)−cos(3x)=0
Viết lại bằng cách sử dụng hằng đẳng thức lượng giác
−cos(3x)+cos3(x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Viết lại bằng cách sử dụng hằng đẳng thức lượng giác
cos(3x)
Viết lại thành=cos(2x+x)
Sử dụng công thức cộng trong hằng đẳng thức: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Sử dụng công thức góc nhân đôi: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Rút gọn cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Áp dụng quy tắc số mũ: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Thêm các số: 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Sử dụng công thức góc nhân đôi: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Sử dụng hằng đẳng thức Pitago: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Mở rộng (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Mở rộng cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Áp dụng luật phân phối: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Rút gọn 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Áp dụng quy tắc số mũ: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Thêm các số: 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Nhân: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Mở rộng −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Áp dụng luật phân phối: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Áp dụng quy tắc trừ-cộng−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Rút gọn −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Nhân các số: 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Áp dụng quy tắc số mũ: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Thêm các số: 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Rút gọn 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Nhóm các thuật ngữ=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Thêm các phần tử tương tự: 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Thêm các phần tử tương tự: −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=−(4cos3(x)−3cos(x))+cos3(x)
Rút gọn −(4cos3(x)−3cos(x))+cos3(x):−3cos3(x)+3cos(x)
−(4cos3(x)−3cos(x))+cos3(x)
−(4cos3(x)−3cos(x)):−4cos3(x)+3cos(x)
−(4cos3(x)−3cos(x))
Phân phối dấu ngoặc đơn=−(4cos3(x))−(−3cos(x))
Áp dụng quy tắc trừ-cộng−(−a)=a,−(a)=−a=−4cos3(x)+3cos(x)
=−4cos3(x)+3cos(x)+cos3(x)
Thêm các phần tử tương tự: −4cos3(x)+cos3(x)=−3cos3(x)=−3cos3(x)+3cos(x)
=−3cos3(x)+3cos(x)
3cos(x)−3cos3(x)=0
Giải quyết bằng cách thay thế
3cos(x)−3cos3(x)=0
Cho: cos(x)=u3u−3u3=0
3u−3u3=0:u=0,u=−1,u=1
3u−3u3=0
Hệ số 3u−3u3:−3u(u+1)(u−1)
3u−3u3
Đưa số hạng chung ra ngoài ngoặc −3u:−3u(u2−1)
−3u3+3u
Áp dụng quy tắc số mũ: ab+c=abacu3=u2u=−3u2u+3u
Đưa số hạng chung ra ngoài ngoặc −3u=−3u(u2−1)
=−3u(u2−1)
Hệ số u2−1:(u+1)(u−1)
u2−1
Viết lại 1 dưới dạng 12=u2−12
Áp Dụng Công Thức Hiệu của Các Bình Phương: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=−3u(u+1)(u−1)
−3u(u+1)(u−1)=0
Sử dụng Nguyên tắc Hệ số 0: Nếu ab=0thì a=0or b=0u=0oru+1=0oru−1=0
Giải u+1=0:u=−1
u+1=0
Di chuyển 1sang vế phải
u+1=0
Trừ 1 cho cả hai bênu+1−1=0−1
Rút gọnu=−1
u=−1
Giải u−1=0:u=1
u−1=0
Di chuyển 1sang vế phải
u−1=0
Thêm 1 vào cả hai bênu−1+1=0+1
Rút gọnu=1
u=1
Các lời giải làu=0,u=−1,u=1
Thay thế lại u=cos(x)cos(x)=0,cos(x)=−1,cos(x)=1
cos(x)=0,cos(x)=−1,cos(x)=1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
Các lời giải chung cho cos(x)=0
cos(x) bảng tuần hoàn với chu kỳ 2πn:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
Các lời giải chung cho cos(x)=−1
cos(x) bảng tuần hoàn với chu kỳ 2πn:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
cos(x)=1:x=2πn
cos(x)=1
Các lời giải chung cho cos(x)=1
cos(x) bảng tuần hoàn với chu kỳ 2πn:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Giải x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
Kết hợp tất cả các cách giảix=2π​+2πn,x=23π​+2πn,x=π+2πn,x=2πn

Đồ Thị

Sorry, your browser does not support this application
Xem đồ thị tương tác

Ví dụ phổ biến

solvefor x,(d^2-3d+2)y=sin(e^x)cos(6x)+cos(2x)=02sin^2(45-a)=1-sin^2(a)(2cos(a)+1)(2cos(a)-1)=2cos^2(a)+1tan^2(x)cot(x)=1
Công cụ học tậpTrình giải toán AIBảng tínhThực HànhBảng Ghi ChúMáy tínhMáy Tính Vẽ Đồ ThịMáy Tính Hình HọcXác minh giải pháp
Ứng dụngỨng dụng Symbolab (Android)Máy Tính Vẽ Đồ Thị (Android)Thực Hành (Android)Ứng dụng Symbolab (iOS)Máy Tính Vẽ Đồ Thị (iOS)Thực Hành (iOS)Tiện ích mở rộng ChromeSymbolab Math Solver API
Công tyGiới thiệu về SymbolabBlogTrợ Giúp
Hợp phápQuyền Riêng TưĐiều KhoảnChính sách cookieCài đặt cookieKhông bán hoặc chia sẻ thông tin cá nhân của tôiBản quyền, Nguyên tắc cộng đồng, DSA và các tài nguyên pháp lý khácTrung tâm pháp lý Learneo
Truyền thông xã hội
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024