Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos^2(2x-1)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos2(2x−1)=1

Solution

x=πn+21​+6π​,x=πn+21​+65π​,x=πn+21​+3π​,x=πn+21​+32π​
+1
Degrees
x=58.64788…∘+180∘n,x=178.64788…∘+180∘n,x=88.64788…∘+180∘n,x=148.64788…∘+180∘n
Solution steps
4cos2(2x−1)=1
Solve by substitution
4cos2(2x−1)=1
Let: cos(2x−1)=u4u2=1
4u2=1:u=21​,u=−21​
4u2=1
Divide both sides by 4
4u2=1
Divide both sides by 444u2​=41​
Simplifyu2=41​
u2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
−41​​=−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
u=21​,u=−21​
Substitute back u=cos(2x−1)cos(2x−1)=21​,cos(2x−1)=−21​
cos(2x−1)=21​,cos(2x−1)=−21​
cos(2x−1)=21​:x=πn+21​+6π​,x=πn+21​+65π​
cos(2x−1)=21​
General solutions for cos(2x−1)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x−1=3π​+2πn,2x−1=35π​+2πn
2x−1=3π​+2πn,2x−1=35π​+2πn
Solve 2x−1=3π​+2πn:x=πn+21​+6π​
2x−1=3π​+2πn
Move 1to the right side
2x−1=3π​+2πn
Add 1 to both sides2x−1+1=3π​+2πn+1
Simplify2x=3π​+2πn+1
2x=3π​+2πn+1
Divide both sides by 2
2x=3π​+2πn+1
Divide both sides by 222x​=23π​​+22πn​+21​
Simplify
22x​=23π​​+22πn​+21​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 23π​​+22πn​+21​:πn+21​+6π​
23π​​+22πn​+21​
Group like terms=21​+22πn​+23π​​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
23π​​=6π​
23π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2π​
Multiply the numbers: 3⋅2=6=6π​
=21​+πn+6π​
Group like terms=πn+21​+6π​
x=πn+21​+6π​
x=πn+21​+6π​
x=πn+21​+6π​
Solve 2x−1=35π​+2πn:x=πn+21​+65π​
2x−1=35π​+2πn
Move 1to the right side
2x−1=35π​+2πn
Add 1 to both sides2x−1+1=35π​+2πn+1
Simplify2x=35π​+2πn+1
2x=35π​+2πn+1
Divide both sides by 2
2x=35π​+2πn+1
Divide both sides by 222x​=235π​​+22πn​+21​
Simplify
22x​=235π​​+22πn​+21​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 235π​​+22πn​+21​:πn+21​+65π​
235π​​+22πn​+21​
Group like terms=21​+22πn​+235π​​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
235π​​=65π​
235π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅25π​
Multiply the numbers: 3⋅2=6=65π​
=21​+πn+65π​
Group like terms=πn+21​+65π​
x=πn+21​+65π​
x=πn+21​+65π​
x=πn+21​+65π​
x=πn+21​+6π​,x=πn+21​+65π​
cos(2x−1)=−21​:x=πn+21​+3π​,x=πn+21​+32π​
cos(2x−1)=−21​
General solutions for cos(2x−1)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x−1=32π​+2πn,2x−1=34π​+2πn
2x−1=32π​+2πn,2x−1=34π​+2πn
Solve 2x−1=32π​+2πn:x=πn+21​+3π​
2x−1=32π​+2πn
Move 1to the right side
2x−1=32π​+2πn
Add 1 to both sides2x−1+1=32π​+2πn+1
Simplify2x=32π​+2πn+1
2x=32π​+2πn+1
Divide both sides by 2
2x=32π​+2πn+1
Divide both sides by 222x​=232π​​+22πn​+21​
Simplify
22x​=232π​​+22πn​+21​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 232π​​+22πn​+21​:πn+21​+3π​
232π​​+22πn​+21​
Group like terms=21​+22πn​+232π​​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
232π​​=3π​
232π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅22π​
Multiply the numbers: 3⋅2=6=62π​
Cancel the common factor: 2=3π​
=21​+πn+3π​
Group like terms=πn+21​+3π​
x=πn+21​+3π​
x=πn+21​+3π​
x=πn+21​+3π​
Solve 2x−1=34π​+2πn:x=πn+21​+32π​
2x−1=34π​+2πn
Move 1to the right side
2x−1=34π​+2πn
Add 1 to both sides2x−1+1=34π​+2πn+1
Simplify2x=34π​+2πn+1
2x=34π​+2πn+1
Divide both sides by 2
2x=34π​+2πn+1
Divide both sides by 222x​=234π​​+22πn​+21​
Simplify
22x​=234π​​+22πn​+21​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 234π​​+22πn​+21​:πn+21​+32π​
234π​​+22πn​+21​
Group like terms=21​+22πn​+234π​​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
234π​​=32π​
234π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅24π​
Multiply the numbers: 3⋅2=6=64π​
Cancel the common factor: 2=32π​
=21​+πn+32π​
Group like terms=πn+21​+32π​
x=πn+21​+32π​
x=πn+21​+32π​
x=πn+21​+32π​
x=πn+21​+3π​,x=πn+21​+32π​
Combine all the solutionsx=πn+21​+6π​,x=πn+21​+65π​,x=πn+21​+3π​,x=πn+21​+32π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)-2cos^2(x)+cos^2(x)=0sqrt(3)*sin(x)=cos(x)sin^{22}(x)sin^3(x)+6=18d^2+4d+4=sin(x)8cos(a)-15sin(a)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024