Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(x/2)= 1/(2-(1/2 sin(x/2)))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(2x​)=2−(21​sin(2x​))1​

Solution

x=−2⋅0.71476…+4πn,x=2π+2⋅0.71476…+4πn,x=2⋅0.90957…+4πn,x=2π−2⋅0.90957…+4πn
+1
Degrees
x=−81.90640…∘+720∘n,x=441.90640…∘+720∘n,x=104.22985…∘+720∘n,x=255.77014…∘+720∘n
Solution steps
sin2(2x​)=2−(21​sin(2x​))1​
Solve by substitution
sin2(2x​)=2−21​sin(2x​)1​
Let: sin(2x​)=uu2=2−21​u1​
u2=2−21​u1​:u≈−0.65544…,u≈0.78924…,u≈3.86619…
u2=2−21​u1​
Simplify 2−21​u1​:4−u2​
2−21​u1​
Join 2−21​u:24−u​
2−21​u
Multiply 21​u:2u​
21​u
Multiply fractions: a⋅cb​=ca⋅b​=21⋅u​
Multiply: 1⋅u=u=2u​
=2−2u​
Convert element to fraction: 2=22⋅2​=22⋅2​−2u​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22⋅2−u​
Multiply the numbers: 2⋅2=4=24−u​
=24−u​1​
Apply the fraction rule: cb​1​=bc​=4−u2​
u2=4−u2​
Multiply both sides by 4−u
u2=4−u2​
Multiply both sides by 4−uu2(4−u)=4−u2​(4−u)
Simplifyu2(4−u)=2
u2(4−u)=2
Solve u2(4−u)=2:u≈−0.65544…,u≈0.78924…,u≈3.86619…
u2(4−u)=2
Expand u2(4−u):4u2−u3
u2(4−u)
Apply the distributive law: a(b−c)=ab−aca=u2,b=4,c=u=u2⋅4−u2u
=4u2−u2u
u2u=u3
u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=u2+1
Add the numbers: 2+1=3=u3
=4u2−u3
4u2−u3=2
Move 2to the left side
4u2−u3=2
Subtract 2 from both sides4u2−u3−2=2−2
Simplify4u2−u3−2=0
4u2−u3−2=0
Write in the standard form an​xn+…+a1​x+a0​=0−u3+4u2−2=0
Find one solution for −u3+4u2−2=0 using Newton-Raphson:u≈−0.65544…
−u3+4u2−2=0
Newton-Raphson Approximation Definition
f(u)=−u3+4u2−2
Find f′(u):−3u2+8u
dud​(−u3+4u2−2)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(u3)+dud​(4u2)−dud​(2)
dud​(u3)=3u2
dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3u3−1
Simplify=3u2
dud​(4u2)=8u
dud​(4u2)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅2u2−1
Simplify=8u
dud​(2)=0
dud​(2)
Derivative of a constant: dxd​(a)=0=0
=−3u2+8u−0
Simplify=−3u2+8u
Let u0​=−1Compute un+1​ until Δun+1​<0.000001
u1​=−0.72727…:Δu1​=0.27272…
f(u0​)=−(−1)3+4(−1)2−2=3f′(u0​)=−3(−1)2+8(−1)=−11u1​=−0.72727…
Δu1​=∣−0.72727…−(−1)∣=0.27272…Δu1​=0.27272…
u2​=−0.65969…:Δu2​=0.06757…
f(u1​)=−(−0.72727…)3+4(−0.72727…)2−2=0.50037…f′(u1​)=−3(−0.72727…)2+8(−0.72727…)=−7.40495…u2​=−0.65969…
Δu2​=∣−0.65969…−(−0.72727…)∣=0.06757…Δu2​=0.06757…
u3​=−0.65545…:Δu3​=0.00424…
f(u2​)=−(−0.65969…)3+4(−0.65969…)2−2=0.02791…f′(u2​)=−3(−0.65969…)2+8(−0.65969…)=−6.58320…u3​=−0.65545…
Δu3​=∣−0.65545…−(−0.65969…)∣=0.00424…Δu3​=0.00424…
u4​=−0.65544…:Δu4​=0.00001…
f(u3​)=−(−0.65545…)3+4(−0.65545…)2−2=0.00010…f′(u3​)=−3(−0.65545…)2+8(−0.65545…)=−6.53254…u4​=−0.65544…
Δu4​=∣−0.65544…−(−0.65545…)∣=0.00001…Δu4​=0.00001…
u5​=−0.65544…:Δu5​=2.47138E−10
f(u4​)=−(−0.65544…)3+4(−0.65544…)2−2=1.61439E−9f′(u4​)=−3(−0.65544…)2+8(−0.65544…)=−6.53235…u5​=−0.65544…
Δu5​=∣−0.65544…−(−0.65544…)∣=2.47138E−10Δu5​=2.47138E−10
u≈−0.65544…
Apply long division:u+0.65544…−u3+4u2−2​=−u2+4.65544…u−3.05137…
−u2+4.65544…u−3.05137…≈0
Find one solution for −u2+4.65544…u−3.05137…=0 using Newton-Raphson:u≈0.78924…
−u2+4.65544…u−3.05137…=0
Newton-Raphson Approximation Definition
f(u)=−u2+4.65544…u−3.05137…
Find f′(u):−2u+4.65544…
dud​(−u2+4.65544…u−3.05137…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(u2)+dud​(4.65544…u)−dud​(3.05137…)
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dud​(4.65544…u)=4.65544…
dud​(4.65544…u)
Take the constant out: (a⋅f)′=a⋅f′=4.65544…dudu​
Apply the common derivative: dudu​=1=4.65544…⋅1
Simplify=4.65544…
dud​(3.05137…)=0
dud​(3.05137…)
Derivative of a constant: dxd​(a)=0=0
=−2u+4.65544…−0
Simplify=−2u+4.65544…
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=0.77251…:Δu1​=0.22748…
f(u0​)=−12+4.65544…⋅1−3.05137…=0.60406…f′(u0​)=−2⋅1+4.65544…=2.65544…u1​=0.77251…
Δu1​=∣0.77251…−1∣=0.22748…Δu1​=0.22748…
u2​=0.78915…:Δu2​=0.01663…
f(u1​)=−0.77251…2+4.65544…⋅0.77251…−3.05137…=−0.05174…f′(u1​)=−2⋅0.77251…+4.65544…=3.11040…u2​=0.78915…
Δu2​=∣0.78915…−0.77251…∣=0.01663…Δu2​=0.01663…
u3​=0.78924…:Δu3​=0.00008…
f(u2​)=−0.78915…2+4.65544…⋅0.78915…−3.05137…=−0.00027…f′(u2​)=−2⋅0.78915…+4.65544…=3.07713…u3​=0.78924…
Δu3​=∣0.78924…−0.78915…∣=0.00008…Δu3​=0.00008…
u4​=0.78924…:Δu4​=2.62972E−9
f(u3​)=−0.78924…2+4.65544…⋅0.78924…−3.05137…=−8.09152E−9f′(u3​)=−2⋅0.78924…+4.65544…=3.07695…u4​=0.78924…
Δu4​=∣0.78924…−0.78924…∣=2.62972E−9Δu4​=2.62972E−9
u≈0.78924…
Apply long division:u−0.78924…−u2+4.65544…u−3.05137…​=−u+3.86619…
−u+3.86619…≈0
u≈3.86619…
The solutions areu≈−0.65544…,u≈0.78924…,u≈3.86619…
u≈−0.65544…,u≈0.78924…,u≈3.86619…
Verify Solutions
Find undefined (singularity) points:u=4
Take the denominator(s) of 2−21​u1​ and compare to zero
Solve 2−21​u=0:u=4
2−21​u=0
Move 2to the right side
2−21​u=0
Subtract 2 from both sides2−21​u−2=0−2
Simplify−21​u=−2
−21​u=−2
Multiply both sides by −2
−21​u=−2
Multiply both sides by −2(−21​u)(−2)=(−2)(−2)
Simplifyu=4
u=4
The following points are undefinedu=4
Combine undefined points with solutions:
u≈−0.65544…,u≈0.78924…,u≈3.86619…
Substitute back u=sin(2x​)sin(2x​)≈−0.65544…,sin(2x​)≈0.78924…,sin(2x​)≈3.86619…
sin(2x​)≈−0.65544…,sin(2x​)≈0.78924…,sin(2x​)≈3.86619…
sin(2x​)=−0.65544…:x=−2arcsin(0.65544…)+4πn,x=2π+2arcsin(0.65544…)+4πn
sin(2x​)=−0.65544…
Apply trig inverse properties
sin(2x​)=−0.65544…
General solutions for sin(2x​)=−0.65544…sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πn2x​=arcsin(−0.65544…)+2πn,2x​=π+arcsin(0.65544…)+2πn
2x​=arcsin(−0.65544…)+2πn,2x​=π+arcsin(0.65544…)+2πn
Solve 2x​=arcsin(−0.65544…)+2πn:x=−2arcsin(0.65544…)+4πn
2x​=arcsin(−0.65544…)+2πn
Simplify arcsin(−0.65544…)+2πn:−arcsin(0.65544…)+2πn
arcsin(−0.65544…)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−0.65544…)=−arcsin(0.65544…)=−arcsin(0.65544…)+2πn
2x​=−arcsin(0.65544…)+2πn
Multiply both sides by 2
2x​=−arcsin(0.65544…)+2πn
Multiply both sides by 222x​=−2arcsin(0.65544…)+2⋅2πn
Simplifyx=−2arcsin(0.65544…)+4πn
x=−2arcsin(0.65544…)+4πn
Solve 2x​=π+arcsin(0.65544…)+2πn:x=2π+2arcsin(0.65544…)+4πn
2x​=π+arcsin(0.65544…)+2πn
Multiply both sides by 2
2x​=π+arcsin(0.65544…)+2πn
Multiply both sides by 222x​=2π+2arcsin(0.65544…)+2⋅2πn
Simplifyx=2π+2arcsin(0.65544…)+4πn
x=2π+2arcsin(0.65544…)+4πn
x=−2arcsin(0.65544…)+4πn,x=2π+2arcsin(0.65544…)+4πn
sin(2x​)=0.78924…:x=2arcsin(0.78924…)+4πn,x=2π−2arcsin(0.78924…)+4πn
sin(2x​)=0.78924…
Apply trig inverse properties
sin(2x​)=0.78924…
General solutions for sin(2x​)=0.78924…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x​=arcsin(0.78924…)+2πn,2x​=π−arcsin(0.78924…)+2πn
2x​=arcsin(0.78924…)+2πn,2x​=π−arcsin(0.78924…)+2πn
Solve 2x​=arcsin(0.78924…)+2πn:x=2arcsin(0.78924…)+4πn
2x​=arcsin(0.78924…)+2πn
Multiply both sides by 2
2x​=arcsin(0.78924…)+2πn
Multiply both sides by 222x​=2arcsin(0.78924…)+2⋅2πn
Simplifyx=2arcsin(0.78924…)+4πn
x=2arcsin(0.78924…)+4πn
Solve 2x​=π−arcsin(0.78924…)+2πn:x=2π−2arcsin(0.78924…)+4πn
2x​=π−arcsin(0.78924…)+2πn
Multiply both sides by 2
2x​=π−arcsin(0.78924…)+2πn
Multiply both sides by 222x​=2π−2arcsin(0.78924…)+2⋅2πn
Simplifyx=2π−2arcsin(0.78924…)+4πn
x=2π−2arcsin(0.78924…)+4πn
x=2arcsin(0.78924…)+4πn,x=2π−2arcsin(0.78924…)+4πn
sin(2x​)=3.86619…:No Solution
sin(2x​)=3.86619…
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=−2arcsin(0.65544…)+4πn,x=2π+2arcsin(0.65544…)+4πn,x=2arcsin(0.78924…)+4πn,x=2π−2arcsin(0.78924…)+4πn
Show solutions in decimal formx=−2⋅0.71476…+4πn,x=2π+2⋅0.71476…+4πn,x=2⋅0.90957…+4πn,x=2π−2⋅0.90957…+4πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)-cos(x+pi/4)=0cos(x)=0.7597cos(3x)=-3cos(x)cos(x)= 280/20004cos(θ)=sqrt(2)+2cos(θ)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024