Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

0.6=(cosh(0.2m))/(cosh(0.4m))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

0.6=cosh(0.4m)cosh(0.2m)​

Solution

m=ln(0.03402…),m=ln(29.38731…)
+1
Degrees
m=−193.69199…∘,m=193.69199…∘
Solution steps
0.6=cosh(0.4m)cosh(0.2m)​
Switch sidescosh(0.4m)cosh(0.2m)​=0.6
Rewrite using trig identities
cosh(0.4m)cosh(0.2m)​=0.6
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2e0.4m+e−0.4m​2e0.2m+e−0.2m​​=0.6
2e0.4m+e−0.4m​2e0.2m+e−0.2m​​=0.6
2e0.4m+e−0.4m​2e0.2m+e−0.2m​​=0.6:m=ln(0.03402…),m=ln(29.38731…)
2e0.4m+e−0.4m​2e0.2m+e−0.2m​​=0.6
Multiply both sides by 2e0.4m+e−0.4m​2e0.4m+e−0.4m​2e0.2m+e−0.2m​​⋅2e0.4m+e−0.4m​=0.6⋅2e0.4m+e−0.4m​
Simplify2e0.2m+e−0.2m​=20.6(e0.4m+e−0.4m)​
Apply exponent rules
2e0.2m+e−0.2m​=20.6(e0.4m+e−0.4m)​
Apply exponent rule: abc=(ab)ce0.2m=(em)0.2,e−0.2m=(em)−0.2,e0.4m=(em)0.4,e−0.4m=(em)−0.42(em)0.2+(em)−0.2​=20.6((em)0.4+(em)−0.4)​
2(em)0.2+(em)−0.2​=20.6((em)0.4+(em)−0.4)​
Rewrite the equation with em=u2(u)0.2+(u)−0.2​=20.6((u)0.4+(u)−0.4)​
Solve 2u0.2+u−0.2​=20.6(u0.4+u−0.4)​:u=0.03402…,u=29.38731…
2u0.2+u−0.2​=20.6(u0.4+u−0.4)​
Multiply both sides by 22u0.2+u−0.2​⋅2=20.6(u0.4+u−0.4)​⋅2
Simplifyu0.2+u−0.2=0.6(u0.4+u−0.4)
Expand u0.2+u−0.2:u0.2+u0.21​
u0.2+u−0.2
Apply exponent rule: a−b=ab1​=u0.2+u0.21​
Expand 0.6(u0.4+u−0.4):0.6u0.4+u0.40.6​
0.6(u0.4+u−0.4)
Apply exponent rule: a−b=ab1​=0.6(u0.4+u0.41​)
Apply the distributive law: a(b+c)=ab+aca=0.6,b=u0.4,c=u0.41​=0.6u0.4+0.6⋅u0.41​
0.6⋅u0.41​=u0.40.6​
0.6⋅u0.41​
Multiply fractions: a⋅cb​=ca⋅b​=u0.41⋅0.6​
Multiply the numbers: 1⋅0.6=0.6=u0.40.6​
=0.6u0.4+u0.40.6​
u0.2+u0.21​=0.6u0.4+u0.40.6​
Use the following exponent property
Rewrite the equation with v+v1​=0.6v2+v20.6​
Solve v+v1​=0.6v2+v20.6​:v≈0.50859…,v≈1.96621…
v+v1​=0.6v2+v20.6​
Multiply by LCM
v+v1​=0.6v2+v20.6​
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 10v⋅10+v1​⋅10=0.6v2⋅10+v20.6​⋅10
Refine10v+v10​=6v2+v26​
Find Least Common Multiplier of v,v2:v2
v,v2
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in v or v2=v2
Multiply by LCM=v210vv2+v10​v2=6v2v2+v26​v2
Simplify
10vv2+v10​v2=6v2v2+v26​v2
Simplify 10vv2:10v3
10vv2
Apply exponent rule: ab⋅ac=ab+cvv2=v1+2=10v1+2
Add the numbers: 1+2=3=10v3
Simplify v10​v2:10v
v10​v2
Multiply fractions: a⋅cb​=ca⋅b​=v10v2​
Cancel the common factor: v=10v
Simplify 6v2v2:6v4
6v2v2
Apply exponent rule: ab⋅ac=ab+cv2v2=v2+2=6v2+2
Add the numbers: 2+2=4=6v4
Simplify v26​v2:6
v26​v2
Multiply fractions: a⋅cb​=ca⋅b​=v26v2​
Cancel the common factor: v2=6
10v3+10v=6v4+6
10v3+10v=6v4+6
10v3+10v=6v4+6
Solve 10v3+10v=6v4+6:v≈0.50859…,v≈1.96621…
10v3+10v=6v4+6
Switch sides6v4+6=10v3+10v
Move 10vto the left side
6v4+6=10v3+10v
Subtract 10v from both sides6v4+6−10v=10v3+10v−10v
Simplify6v4+6−10v=10v3
6v4+6−10v=10v3
Move 10v3to the left side
6v4+6−10v=10v3
Subtract 10v3 from both sides6v4+6−10v−10v3=10v3−10v3
Simplify6v4+6−10v−10v3=0
6v4+6−10v−10v3=0
Write in the standard form an​xn+…+a1​x+a0​=06v4−10v3−10v+6=0
Find one solution for 6v4−10v3−10v+6=0 using Newton-Raphson:v≈0.50859…
6v4−10v3−10v+6=0
Newton-Raphson Approximation Definition
f(v)=6v4−10v3−10v+6
Find f′(v):24v3−30v2−10
dvd​(6v4−10v3−10v+6)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(6v4)−dvd​(10v3)−dvd​(10v)+dvd​(6)
dvd​(6v4)=24v3
dvd​(6v4)
Take the constant out: (a⋅f)′=a⋅f′=6dvd​(v4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=6⋅4v4−1
Simplify=24v3
dvd​(10v3)=30v2
dvd​(10v3)
Take the constant out: (a⋅f)′=a⋅f′=10dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=10⋅3v3−1
Simplify=30v2
dvd​(10v)=10
dvd​(10v)
Take the constant out: (a⋅f)′=a⋅f′=10dvdv​
Apply the common derivative: dvdv​=1=10⋅1
Simplify=10
dvd​(6)=0
dvd​(6)
Derivative of a constant: dxd​(a)=0=0
=24v3−30v2−10+0
Simplify=24v3−30v2−10
Let v0​=1Compute vn+1​ until Δvn+1​<0.000001
v1​=0.5:Δv1​=0.5
f(v0​)=6⋅14−10⋅13−10⋅1+6=−8f′(v0​)=24⋅13−30⋅12−10=−16v1​=0.5
Δv1​=∣0.5−1∣=0.5Δv1​=0.5
v2​=0.50862…:Δv2​=0.00862…
f(v1​)=6⋅0.54−10⋅0.53−10⋅0.5+6=0.125f′(v1​)=24⋅0.53−30⋅0.52−10=−14.5v2​=0.50862…
Δv2​=∣0.50862…−0.5∣=0.00862…Δv2​=0.00862…
v3​=0.50859…:Δv3​=0.00003…
f(v2​)=6⋅0.50862…4−10⋅0.50862…3−10⋅0.50862…+6=−0.00044…f′(v2​)=24⋅0.50862…3−30⋅0.50862…2−10=−14.60298…v3​=0.50859…
Δv3​=∣0.50859…−0.50862…∣=0.00003…Δv3​=0.00003…
v4​=0.50859…:Δv4​=3.77392E−10
f(v3​)=6⋅0.50859…4−10⋅0.50859…3−10⋅0.50859…+6=−5.51091E−9f′(v3​)=24⋅0.50859…3−30⋅0.50859…2−10=−14.60262…v4​=0.50859…
Δv4​=∣0.50859…−0.50859…∣=3.77392E−10Δv4​=3.77392E−10
v≈0.50859…
Apply long division:v−0.50859…6v4−10v3−10v+6​=6v3−6.94845…v2−3.53391…v−11.79731…
6v3−6.94845…v2−3.53391…v−11.79731…≈0
Find one solution for 6v3−6.94845…v2−3.53391…v−11.79731…=0 using Newton-Raphson:v≈1.96621…
6v3−6.94845…v2−3.53391…v−11.79731…=0
Newton-Raphson Approximation Definition
f(v)=6v3−6.94845…v2−3.53391…v−11.79731…
Find f′(v):18v2−13.89691…v−3.53391…
dvd​(6v3−6.94845…v2−3.53391…v−11.79731…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(6v3)−dvd​(6.94845…v2)−dvd​(3.53391…v)−dvd​(11.79731…)
dvd​(6v3)=18v2
dvd​(6v3)
Take the constant out: (a⋅f)′=a⋅f′=6dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=6⋅3v3−1
Simplify=18v2
dvd​(6.94845…v2)=13.89691…v
dvd​(6.94845…v2)
Take the constant out: (a⋅f)′=a⋅f′=6.94845…dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=6.94845…⋅2v2−1
Simplify=13.89691…v
dvd​(3.53391…v)=3.53391…
dvd​(3.53391…v)
Take the constant out: (a⋅f)′=a⋅f′=3.53391…dvdv​
Apply the common derivative: dvdv​=1=3.53391…⋅1
Simplify=3.53391…
dvd​(11.79731…)=0
dvd​(11.79731…)
Derivative of a constant: dxd​(a)=0=0
=18v2−13.89691…v−3.53391…−0
Simplify=18v2−13.89691…v−3.53391…
Let v0​=−3Compute vn+1​ until Δvn+1​<0.000001
v1​=−1.87222…:Δv1​=1.12777…
f(v0​)=6(−3)3−6.94845…(−3)2−3.53391…(−3)−11.79731…=−225.73168…f′(v0​)=18(−3)2−13.89691…(−3)−3.53391…=200.15683…v1​=−1.87222…
Δv1​=∣−1.87222…−(−3)∣=1.12777…Δv1​=1.12777…
v2​=−1.06697…:Δv2​=0.80525…
f(v1​)=6(−1.87222…)3−6.94845…(−1.87222…)2−3.53391…(−1.87222…)−11.79731…=−68.91246…f′(v1​)=18(−1.87222…)2−13.89691…(−1.87222…)−3.53391…=85.57838…v2​=−1.06697…
Δv2​=∣−1.06697…−(−1.87222…)∣=0.80525…Δv2​=0.80525…
v3​=−0.33628…:Δv3​=0.73068…
f(v2​)=6(−1.06697…)3−6.94845…(−1.06697…)2−3.53391…(−1.06697…)−11.79731…=−23.22503…f′(v2​)=18(−1.06697…)2−13.89691…(−1.06697…)−3.53391…=31.78535…v3​=−0.33628…
Δv3​=∣−0.33628…−(−1.06697…)∣=0.73068…Δv3​=0.73068…
v4​=3.32442…:Δv4​=3.66071…
f(v3​)=6(−0.33628…)3−6.94845…(−0.33628…)2−3.53391…(−0.33628…)−11.79731…=−11.62288…f′(v3​)=18(−0.33628…)2−13.89691…(−0.33628…)−3.53391…=3.17502…v4​=3.32442…
Δv4​=∣3.32442…−(−0.33628…)∣=3.66071…Δv4​=3.66071…
v5​=2.51941…:Δv5​=0.80501…
f(v4​)=6⋅3.32442…3−6.94845…⋅3.32442…2−3.53391…⋅3.32442…−11.79731…=120.10728…f′(v4​)=18⋅3.32442…2−13.89691…⋅3.32442…−3.53391…=149.19962…v5​=2.51941…
Δv5​=∣2.51941…−3.32442…∣=0.80501…Δv5​=0.80501…
v6​=2.10802…:Δv6​=0.41139…
f(v5​)=6⋅2.51941…3−6.94845…⋅2.51941…2−3.53391…⋅2.51941…−11.79731…=31.14567…f′(v5​)=18⋅2.51941…2−13.89691…⋅2.51941…−3.53391…=75.70833…v6​=2.10802…
Δv6​=∣2.10802…−2.51941…∣=0.41139…Δv6​=0.41139…
v7​=1.97907…:Δv7​=0.12895…
f(v6​)=6⋅2.10802…3−6.94845…⋅2.10802…2−3.53391…⋅2.10802…−11.79731…=6.08132…f′(v6​)=18⋅2.10802…2−13.89691…⋅2.10802…−3.53391…=47.15903…v7​=1.97907…
Δv7​=∣1.97907…−2.10802…∣=0.12895…Δv7​=0.12895…
v8​=1.96633…:Δv8​=0.01273…
f(v7​)=6⋅1.97907…3−6.94845…⋅1.97907…2−3.53391…⋅1.97907…−11.79731…=0.50256…f′(v7​)=18⋅1.97907…2−13.89691…⋅1.97907…−3.53391…=39.46425…v8​=1.96633…
Δv8​=∣1.96633…−1.97907…∣=0.01273…Δv8​=0.01273…
v9​=1.96621…:Δv9​=0.00011…
f(v8​)=6⋅1.96633…3−6.94845…⋅1.96633…2−3.53391…⋅1.96633…−11.79731…=0.00463…f′(v8​)=18⋅1.96633…2−13.89691…⋅1.96633…−3.53391…=38.73684…v9​=1.96621…
Δv9​=∣1.96621…−1.96633…∣=0.00011…Δv9​=0.00011…
v10​=1.96621…:Δv10​=1.05283E−8
f(v9​)=6⋅1.96621…3−6.94845…⋅1.96621…2−3.53391…⋅1.96621…−11.79731…=4.0776E−7f′(v9​)=18⋅1.96621…2−13.89691…⋅1.96621…−3.53391…=38.73003…v10​=1.96621…
Δv10​=∣1.96621…−1.96621…∣=1.05283E−8Δv10​=1.05283E−8
v≈1.96621…
Apply long division:v−1.96621…6v3−6.94845…v2−3.53391…v−11.79731…​=6v2+4.84885…v+6
6v2+4.84885…v+6≈0
Find one solution for 6v2+4.84885…v+6=0 using Newton-Raphson:No Solution for v∈R
6v2+4.84885…v+6=0
Newton-Raphson Approximation Definition
f(v)=6v2+4.84885…v+6
Find f′(v):12v+4.84885…
dvd​(6v2+4.84885…v+6)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(6v2)+dvd​(4.84885…v)+dvd​(6)
dvd​(6v2)=12v
dvd​(6v2)
Take the constant out: (a⋅f)′=a⋅f′=6dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=6⋅2v2−1
Simplify=12v
dvd​(4.84885…v)=4.84885…
dvd​(4.84885…v)
Take the constant out: (a⋅f)′=a⋅f′=4.84885…dvdv​
Apply the common derivative: dvdv​=1=4.84885…⋅1
Simplify=4.84885…
dvd​(6)=0
dvd​(6)
Derivative of a constant: dxd​(a)=0=0
=12v+4.84885…+0
Simplify=12v+4.84885…
Let v0​=−1Compute vn+1​ until Δvn+1​<0.000001
v1​=0:Δv1​=1
f(v0​)=6(−1)2+4.84885…(−1)+6=7.15114…f′(v0​)=12(−1)+4.84885…=−7.15114…v1​=0
Δv1​=∣0−(−1)∣=1Δv1​=1
v2​=−1.23740…:Δv2​=1.23740…
f(v1​)=6⋅02+4.84885…⋅0+6=6f′(v1​)=12⋅0+4.84885…=4.84885…v2​=−1.23740…
Δv2​=∣−1.23740…−0∣=1.23740…Δv2​=1.23740…
v3​=−0.31870…:Δv3​=0.91870…
f(v2​)=6(−1.23740…)2+4.84885…(−1.23740…)+6=9.18702…f′(v2​)=12(−1.23740…)+4.84885…=−10v3​=−0.31870…
Δv3​=∣−0.31870…−(−1.23740…)∣=0.91870…Δv3​=0.91870…
v4​=−5.26202…:Δv4​=4.94332…
f(v3​)=6(−0.31870…)2+4.84885…(−0.31870…)+6=5.06408…f′(v3​)=12(−0.31870…)+4.84885…=1.02442…v4​=−5.26202…
Δv4​=∣−5.26202…−(−0.31870…)∣=4.94332…Δv4​=4.94332…
v5​=−2.74693…:Δv5​=2.51509…
f(v4​)=6(−5.26202…)2+4.84885…(−5.26202…)+6=146.61875…f′(v4​)=12(−5.26202…)+4.84885…=−58.29546…v5​=−2.74693…
Δv5​=∣−2.74693…−(−5.26202…)∣=2.51509…Δv5​=2.51509…
v6​=−1.39693…:Δv6​=1.34999…
f(v5​)=6(−2.74693…)2+4.84885…(−2.74693…)+6=37.95427…f′(v5​)=12(−2.74693…)+4.84885…=−28.11430…v6​=−1.39693…
Δv6​=∣−1.39693…−(−2.74693…)∣=1.34999…Δv6​=1.34999…
v7​=−0.47912…:Δv7​=0.91780…
f(v6​)=6(−1.39693…)2+4.84885…(−1.39693…)+6=10.93498…f′(v6​)=12(−1.39693…)+4.84885…=−11.91431…v7​=−0.47912…
Δv7​=∣−0.47912…−(−1.39693…)∣=0.91780…Δv7​=0.91780…
v8​=5.13225…:Δv8​=5.61138…
f(v7​)=6(−0.47912…)2+4.84885…(−0.47912…)+6=5.05415…f′(v7​)=12(−0.47912…)+4.84885…=−0.90069…v8​=5.13225…
Δv8​=∣5.13225…−(−0.47912…)∣=5.61138…Δv8​=5.61138…
v9​=2.28852…:Δv9​=2.84373…
f(v8​)=6⋅5.13225…2+4.84885…⋅5.13225…+6=188.92585…f′(v8​)=12⋅5.13225…+4.84885…=66.43592…v9​=2.28852…
Δv9​=∣2.28852…−5.13225…∣=2.84373…Δv9​=2.84373…
v10​=0.78685…:Δv10​=1.50167…
f(v9​)=6⋅2.28852…2+4.84885…⋅2.28852…+6=48.52081…f′(v9​)=12⋅2.28852…+4.84885…=32.31115…v10​=0.78685…
Δv10​=∣0.78685…−2.28852…∣=1.50167…Δv10​=1.50167…
v11​=−0.15990…:Δv11​=0.94675…
f(v10​)=6⋅0.78685…2+4.84885…⋅0.78685…+6=13.53014…f′(v10​)=12⋅0.78685…+4.84885…=14.29107…v11​=−0.15990…
Δv11​=∣−0.15990…−0.78685…∣=0.94675…Δv11​=0.94675…
v12​=−1.99540…:Δv12​=1.83550…
f(v11​)=6(−0.15990…)2+4.84885…(−0.15990…)+6=5.37806…f′(v11​)=12(−0.15990…)+4.84885…=2.93001…v12​=−1.99540…
Δv12​=∣−1.99540…−(−0.15990…)∣=1.83550…Δv12​=1.83550…
Cannot find solution
The solutions arev≈0.50859…,v≈1.96621…
v≈0.50859…,v≈1.96621…
Verify Solutions
Find undefined (singularity) points:v=0
Take the denominator(s) of v+v1​ and compare to zero
v=0
Take the denominator(s) of 0.6v2+v20.6​ and compare to zero
Solve v2=0:v=0
v2=0
Apply rule xn=0⇒x=0
v=0
The following points are undefinedv=0
Combine undefined points with solutions:
v≈0.50859…,v≈1.96621…
v≈0.50859…,v≈1.96621…
Substitute back solve for u
Solve
Take both sides of the equation to the power of 5:u=0.03402…
Expand
Apply radical rule: =(u51​)5
Apply exponent rule: (ab)c=abc=u51​⋅5
51​⋅5=1
51​⋅5
Multiply fractions: a⋅cb​=ca⋅b​=51⋅5​
Cancel the common factor: 5=1
=u
Expand 0.50859…5:0.03402…
0.50859…5
0.50859…5=0.03402…=0.03402…
u=0.03402…
u=0.03402…
Verify Solutions:u=0.03402…True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in u=0.03402…:True
=0.50859…
0.50859…=0.50859…
True
The solution isu=0.03402…
Solve
Take both sides of the equation to the power of 5:u=29.38731…
Expand
Apply radical rule: =(u51​)5
Apply exponent rule: (ab)c=abc=u51​⋅5
51​⋅5=1
51​⋅5
Multiply fractions: a⋅cb​=ca⋅b​=51⋅5​
Cancel the common factor: 5=1
=u
Expand 1.96621…5:29.38731…
1.96621…5
1.96621…5=29.38731…=29.38731…
u=29.38731…
u=29.38731…
Verify Solutions:u=29.38731…True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in u=29.38731…:True
=1.96621…
1.96621…=1.96621…
True
The solution isu=29.38731…
u=0.03402…,u=29.38731…
Verify Solutions:u=0.03402…True,u=29.38731…True
Check the solutions by plugging them into 2u0.2+u−0.2​=20.6(u0.4+u−0.4)​
Remove the ones that don't agree with the equation.
Plug in u=0.03402…:True
20.03402…0.2+0.03402…−0.2​=20.6(0.03402…0.4+0.03402…−0.4)​
20.03402…0.2+0.03402…−0.2​=1.23740…
20.03402…0.2+0.03402…−0.2​
0.03402…0.2=0.50859…=20.50859…+0.03402…−0.2​
0.03402…−0.2=1.96621…=20.50859…+1.96621…​
Add the numbers: 0.50859…+1.96621…=2.47480…=22.47480…​
Divide the numbers: 22.47480…​=1.23740…=1.23740…
20.6(0.03402…0.4+0.03402…−0.4)​=1.23740…
20.6(0.03402…0.4+0.03402…−0.4)​
Divide the numbers: 20.6​=0.3=0.3(0.03402…0.4+0.03402…−0.4)
0.03402…0.4=0.25866…=0.3(0.25866…+0.03402…−0.4)
0.03402…−0.4=3.86601…=0.3(0.25866…+3.86601…)
Add the numbers: 0.25866…+3.86601…=4.12468…=0.3⋅4.12468…
Multiply the numbers: 0.3⋅4.12468…=1.23740…=1.23740…
1.23740…=1.23740…
True
Plug in u=29.38731…:True
229.38731…0.2+29.38731…−0.2​=20.6(29.38731…0.4+29.38731…−0.4)​
229.38731…0.2+29.38731…−0.2​=1.23740…
229.38731…0.2+29.38731…−0.2​
29.38731…0.2=1.96621…=21.96621…+29.38731…−0.2​
29.38731…−0.2=0.50859…=21.96621…+0.50859…​
Add the numbers: 1.96621…+0.50859…=2.47480…=22.47480…​
Divide the numbers: 22.47480…​=1.23740…=1.23740…
20.6(29.38731…0.4+29.38731…−0.4)​=1.23740…
20.6(29.38731…0.4+29.38731…−0.4)​
Divide the numbers: 20.6​=0.3=0.3(29.38731…0.4+29.38731…−0.4)
29.38731…0.4=3.86601…=0.3(3.86601…+29.38731…−0.4)
29.38731…−0.4=0.25866…=0.3(0.25866…+3.86601…)
Add the numbers: 3.86601…+0.25866…=4.12468…=0.3⋅4.12468…
Multiply the numbers: 0.3⋅4.12468…=1.23740…=1.23740…
1.23740…=1.23740…
True
The solutions areu=0.03402…,u=29.38731…
u=0.03402…,u=29.38731…
Substitute back u=em,solve for m
Solve em=0.03402…:m=ln(0.03402…)
em=0.03402…
Apply exponent rules
em=0.03402…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(em)=ln(0.03402…)
Apply log rule: ln(ea)=aln(em)=mm=ln(0.03402…)
m=ln(0.03402…)
Solve em=29.38731…:m=ln(29.38731…)
em=29.38731…
Apply exponent rules
em=29.38731…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(em)=ln(29.38731…)
Apply log rule: ln(ea)=aln(em)=mm=ln(29.38731…)
m=ln(29.38731…)
m=ln(0.03402…),m=ln(29.38731…)
Verify Solutions:m=ln(0.03402…)True,m=ln(29.38731…)True
Check the solutions by plugging them into 2e0.4m+e−0.4m​2e0.2m+e−0.2m​​=0.6
Remove the ones that don't agree with the equation.
Plug in m=ln(0.03402…):True
2e0.4ln(0.03402…)+e−0.4ln(0.03402…)​2e0.2ln(0.03402…)+e−0.2ln(0.03402…)​​=0.6
2e0.4ln(0.03402…)+e−0.4ln(0.03402…)​2e0.2ln(0.03402…)+e−0.2ln(0.03402…)​​=0.6
2e0.4ln(0.03402…)+e−0.4ln(0.03402…)​2e0.2ln(0.03402…)+e−0.2ln(0.03402…)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(e0.4ln(0.03402…)+e−0.4ln(0.03402…))(e0.2ln(0.03402…)+e−0.2ln(0.03402…))⋅2​
Cancel the common factor: 2=e0.4ln(0.03402…)+e−0.4ln(0.03402…)e0.2ln(0.03402…)+e−0.2ln(0.03402…)​
e0.4ln(0.03402…)=0.03402…0.4
e0.4ln(0.03402…)
Apply exponent rule: abc=(ab)c=(eln(0.03402…))0.4
Apply log rule: aloga​(b)=beln(0.03402…)=0.03402…=0.03402…0.4
e−0.4ln(0.03402…)=0.03402…−0.4
e−0.4ln(0.03402…)
Apply exponent rule: abc=(ab)c=(eln(0.03402…))−0.4
Apply log rule: aloga​(b)=beln(0.03402…)=0.03402…=0.03402…−0.4
=0.03402…0.4+0.03402…−0.4e0.2ln(0.03402…)+e−0.2ln(0.03402…)​
e0.2ln(0.03402…)=0.03402…0.2
e0.2ln(0.03402…)
Apply exponent rule: abc=(ab)c=(eln(0.03402…))0.2
Apply log rule: aloga​(b)=beln(0.03402…)=0.03402…=0.03402…0.2
e−0.2ln(0.03402…)=0.03402…−0.2
e−0.2ln(0.03402…)
Apply exponent rule: abc=(ab)c=(eln(0.03402…))−0.2
Apply log rule: aloga​(b)=beln(0.03402…)=0.03402…=0.03402…−0.2
=0.03402…0.4+0.03402…−0.40.03402…0.2+0.03402…−0.2​
Simplify
0.03402…0.4+0.03402…−0.40.03402…0.2+0.03402…−0.2​
Apply exponent rule: a−b=ab1​0.03402…−0.4=0.03402…0.41​=0.03402…0.4+0.03402…0.41​0.03402…0.2+0.03402…−0.2​
Apply exponent rule: a−b=ab1​0.03402…−0.2=0.03402…0.21​=0.03402…0.4+0.03402…0.41​0.03402…0.2+0.03402…0.21​​
Join 0.03402…0.4+0.03402…0.41​:4.12468…
0.03402…0.4+0.03402…0.41​
Convert element to fraction: 0.03402…0.4=0.03402…0.40.03402…0.4⋅0.03402…0.4​=0.03402…0.40.03402…0.4⋅0.03402…0.4​+0.03402…0.41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=0.03402…0.40.03402…0.4⋅0.03402…0.4+1​
0.03402…0.4⋅0.03402…0.4+1=0.03402…0.8+1
0.03402…0.4⋅0.03402…0.4+1
0.03402…0.4⋅0.03402…0.4=0.03402…0.8
0.03402…0.4⋅0.03402…0.4
Apply exponent rule: ab⋅ac=ab+c0.03402…0.4⋅0.03402…0.4=0.03402…0.4+0.4=0.03402…0.4+0.4
Add the numbers: 0.4+0.4=0.8=0.03402…0.8
=0.03402…0.8+1
=0.03402…0.40.03402…0.8+1​
0.03402…0.8=0.06690…=0.03402…0.40.06690…+1​
Add the numbers: 0.06690…+1=1.06690…=0.03402…0.41.06690…​
0.03402…0.4=0.25866…=0.25866…1.06690…​
Divide the numbers: 0.25866…1.06690…​=4.12468…=4.12468…
=4.12468…0.03402…0.2+0.03402…0.21​​
Join 0.03402…0.2+0.03402…0.21​:2.47480…
0.03402…0.2+0.03402…0.21​
Convert element to fraction: 0.03402…0.2=0.03402…0.20.03402…0.2⋅0.03402…0.2​=0.03402…0.20.03402…0.2⋅0.03402…0.2​+0.03402…0.21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=0.03402…0.20.03402…0.2⋅0.03402…0.2+1​
0.03402…0.2⋅0.03402…0.2+1=0.03402…0.4+1
0.03402…0.2⋅0.03402…0.2+1
0.03402…0.2⋅0.03402…0.2=0.03402…0.4
0.03402…0.2⋅0.03402…0.2
Apply exponent rule: ab⋅ac=ab+c0.03402…0.2⋅0.03402…0.2=0.03402…0.2+0.2=0.03402…0.2+0.2
Add the numbers: 0.2+0.2=0.4=0.03402…0.4
=0.03402…0.4+1
=0.03402…0.20.03402…0.4+1​
0.03402…0.4=0.25866…=0.03402…0.20.25866…+1​
Add the numbers: 0.25866…+1=1.25866…=0.03402…0.21.25866…​
0.03402…0.2=0.50859…=0.50859…1.25866…​
Divide the numbers: 0.50859…1.25866…​=2.47480…=2.47480…
=4.12468…2.47480…​
Divide the numbers: 4.12468…2.47480…​=0.6=0.6
=0.6
0.6=0.6
True
Plug in m=ln(29.38731…):True
2e0.4ln(29.38731…)+e−0.4ln(29.38731…)​2e0.2ln(29.38731…)+e−0.2ln(29.38731…)​​=0.6
2e0.4ln(29.38731…)+e−0.4ln(29.38731…)​2e0.2ln(29.38731…)+e−0.2ln(29.38731…)​​=0.6
2e0.4ln(29.38731…)+e−0.4ln(29.38731…)​2e0.2ln(29.38731…)+e−0.2ln(29.38731…)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(e0.4ln(29.38731…)+e−0.4ln(29.38731…))(e0.2ln(29.38731…)+e−0.2ln(29.38731…))⋅2​
Cancel the common factor: 2=e0.4ln(29.38731…)+e−0.4ln(29.38731…)e0.2ln(29.38731…)+e−0.2ln(29.38731…)​
e0.4ln(29.38731…)=29.38731…0.4
e0.4ln(29.38731…)
Apply exponent rule: abc=(ab)c=(eln(29.38731…))0.4
Apply log rule: aloga​(b)=beln(29.38731…)=29.38731…=29.38731…0.4
e−0.4ln(29.38731…)=29.38731…−0.4
e−0.4ln(29.38731…)
Apply exponent rule: abc=(ab)c=(eln(29.38731…))−0.4
Apply log rule: aloga​(b)=beln(29.38731…)=29.38731…=29.38731…−0.4
=29.38731…0.4+29.38731…−0.4e0.2ln(29.38731…)+e−0.2ln(29.38731…)​
e0.2ln(29.38731…)=29.38731…0.2
e0.2ln(29.38731…)
Apply exponent rule: abc=(ab)c=(eln(29.38731…))0.2
Apply log rule: aloga​(b)=beln(29.38731…)=29.38731…=29.38731…0.2
e−0.2ln(29.38731…)=29.38731…−0.2
e−0.2ln(29.38731…)
Apply exponent rule: abc=(ab)c=(eln(29.38731…))−0.2
Apply log rule: aloga​(b)=beln(29.38731…)=29.38731…=29.38731…−0.2
=29.38731…0.4+29.38731…−0.429.38731…0.2+29.38731…−0.2​
Simplify
29.38731…0.4+29.38731…−0.429.38731…0.2+29.38731…−0.2​
Apply exponent rule: a−b=ab1​29.38731…−0.4=29.38731…0.41​=29.38731…0.4+29.38731…0.41​29.38731…0.2+29.38731…−0.2​
Apply exponent rule: a−b=ab1​29.38731…−0.2=29.38731…0.21​=29.38731…0.4+29.38731…0.41​29.38731…0.2+29.38731…0.21​​
Join 29.38731…0.4+29.38731…0.41​:4.12468…
29.38731…0.4+29.38731…0.41​
Convert element to fraction: 29.38731…0.4=29.38731…0.429.38731…0.4⋅29.38731…0.4​=29.38731…0.429.38731…0.4⋅29.38731…0.4​+29.38731…0.41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=29.38731…0.429.38731…0.4⋅29.38731…0.4+1​
29.38731…0.4⋅29.38731…0.4+1=29.38731…0.8+1
29.38731…0.4⋅29.38731…0.4+1
29.38731…0.4⋅29.38731…0.4=29.38731…0.8
29.38731…0.4⋅29.38731…0.4
Apply exponent rule: ab⋅ac=ab+c29.38731…0.4⋅29.38731…0.4=29.38731…0.4+0.4=29.38731…0.4+0.4
Add the numbers: 0.4+0.4=0.8=29.38731…0.8
=29.38731…0.8+1
=29.38731…0.429.38731…0.8+1​
29.38731…0.8=14.94610…=29.38731…0.414.94610…+1​
Add the numbers: 14.94610…+1=15.94610…=29.38731…0.415.94610…​
29.38731…0.4=3.86601…=3.86601…15.94610…​
Divide the numbers: 3.86601…15.94610…​=4.12468…=4.12468…
=4.12468…29.38731…0.2+29.38731…0.21​​
Join 29.38731…0.2+29.38731…0.21​:2.47480…
29.38731…0.2+29.38731…0.21​
Convert element to fraction: 29.38731…0.2=29.38731…0.229.38731…0.2⋅29.38731…0.2​=29.38731…0.229.38731…0.2⋅29.38731…0.2​+29.38731…0.21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=29.38731…0.229.38731…0.2⋅29.38731…0.2+1​
29.38731…0.2⋅29.38731…0.2+1=29.38731…0.4+1
29.38731…0.2⋅29.38731…0.2+1
29.38731…0.2⋅29.38731…0.2=29.38731…0.4
29.38731…0.2⋅29.38731…0.2
Apply exponent rule: ab⋅ac=ab+c29.38731…0.2⋅29.38731…0.2=29.38731…0.2+0.2=29.38731…0.2+0.2
Add the numbers: 0.2+0.2=0.4=29.38731…0.4
=29.38731…0.4+1
=29.38731…0.229.38731…0.4+1​
29.38731…0.4=3.86601…=29.38731…0.23.86601…+1​
Add the numbers: 3.86601…+1=4.86601…=29.38731…0.24.86601…​
29.38731…0.2=1.96621…=1.96621…4.86601…​
Divide the numbers: 1.96621…4.86601…​=2.47480…=2.47480…
=4.12468…2.47480…​
Divide the numbers: 4.12468…2.47480…​=0.6=0.6
=0.6
0.6=0.6
True
The solutions arem=ln(0.03402…),m=ln(29.38731…)
m=ln(0.03402…),m=ln(29.38731…)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

12cos(2x)+5sin(x)-9=0sin(x)= 4/8csc(a)=-1sin^2(x/2)= 1/(2-(1/2 sin(x/2)))cos(x)-cos(x+pi/4)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 0.6=(cosh(0.2m))/(cosh(0.4m)) ?

    The general solution for 0.6=(cosh(0.2m))/(cosh(0.4m)) is m=ln(0.03402…),m=ln(29.38731…)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024