Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(2x)=sin(0.5x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x)=sin(0.5x)

Solution

x=52π​+58πn​,x=56π​+58πn​,x=38πn​,x=34π​+38πn​
+1
Degrees
x=72∘+288∘n,x=216∘+288∘n,x=0∘+480∘n,x=240∘+480∘n
Solution steps
sin(2x)=sin(0.5x)
Subtract sin(0.5x) from both sidessin(2x)−sin(0.5x)=0
Rewrite using trig identities
−sin(0.5x)+sin(2x)
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=2sin(22x−0.5x​)cos(22x+0.5x​)
Simplify 2sin(22x−0.5x​)cos(22x+0.5x​):2sin(0.75x)cos(1.25x)
2sin(22x−0.5x​)cos(22x+0.5x​)
Add similar elements: 2x−0.5x=1.5x=2sin(21.5x​)cos(22x+0.5x​)
Add similar elements: 2x+0.5x=2.5x=2sin(21.5x​)cos(22.5x​)
Divide the numbers: 21.5​=0.75=2sin(0.75x)cos(22.5x​)
Divide the numbers: 22.5​=1.25=2sin(0.75x)cos(1.25x)
=2sin(0.75x)cos(1.25x)
2cos(1.25x)sin(0.75x)=0
Solving each part separatelycos(1.25x)=0orsin(0.75x)=0
cos(1.25x)=0:x=52π​+58πn​,x=56π​+58πn​
cos(1.25x)=0
General solutions for cos(1.25x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
1.25x=2π​+2πn,1.25x=23π​+2πn
1.25x=2π​+2πn,1.25x=23π​+2πn
Solve 1.25x=2π​+2πn:x=52π​+58πn​
1.25x=2π​+2πn
Multiply both sides by 100
1.25x=2π​+2πn
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 1001.25x⋅100=2π​⋅100+2πn⋅100
Refine125x=50π+200πn
125x=50π+200πn
Divide both sides by 125
125x=50π+200πn
Divide both sides by 125125125x​=12550π​+125200πn​
Simplify
125125x​=12550π​+125200πn​
Simplify 125125x​:x
125125x​
Divide the numbers: 125125​=1=x
Simplify 12550π​+125200πn​:52π​+58πn​
12550π​+125200πn​
Cancel 12550π​:52π​
12550π​
Cancel the common factor: 25=52π​
=52π​+125200πn​
Cancel 125200πn​:58πn​
125200πn​
Cancel the common factor: 25=58πn​
=52π​+58πn​
x=52π​+58πn​
x=52π​+58πn​
x=52π​+58πn​
Solve 1.25x=23π​+2πn:x=56π​+58πn​
1.25x=23π​+2πn
Multiply both sides by 100
1.25x=23π​+2πn
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 1001.25x⋅100=23π​⋅100+2πn⋅100
Refine125x=150π+200πn
125x=150π+200πn
Divide both sides by 125
125x=150π+200πn
Divide both sides by 125125125x​=125150π​+125200πn​
Simplify
125125x​=125150π​+125200πn​
Simplify 125125x​:x
125125x​
Divide the numbers: 125125​=1=x
Simplify 125150π​+125200πn​:56π​+58πn​
125150π​+125200πn​
Cancel 125150π​:56π​
125150π​
Cancel the common factor: 25=56π​
=56π​+125200πn​
Cancel 125200πn​:58πn​
125200πn​
Cancel the common factor: 25=58πn​
=56π​+58πn​
x=56π​+58πn​
x=56π​+58πn​
x=56π​+58πn​
x=52π​+58πn​,x=56π​+58πn​
sin(0.75x)=0:x=38πn​,x=34π​+38πn​
sin(0.75x)=0
General solutions for sin(0.75x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
0.75x=0+2πn,0.75x=π+2πn
0.75x=0+2πn,0.75x=π+2πn
Solve 0.75x=0+2πn:x=38πn​
0.75x=0+2πn
0+2πn=2πn0.75x=2πn
Multiply both sides by 100
0.75x=2πn
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 1000.75x⋅100=2πn⋅100
Refine75x=200πn
75x=200πn
Divide both sides by 75
75x=200πn
Divide both sides by 757575x​=75200πn​
Simplifyx=38πn​
x=38πn​
Solve 0.75x=π+2πn:x=34π​+38πn​
0.75x=π+2πn
Multiply both sides by 100
0.75x=π+2πn
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 1000.75x⋅100=π100+2πn⋅100
Refine75x=100π+200πn
75x=100π+200πn
Divide both sides by 75
75x=100π+200πn
Divide both sides by 757575x​=75100π​+75200πn​
Simplify
7575x​=75100π​+75200πn​
Simplify 7575x​:x
7575x​
Divide the numbers: 7575​=1=x
Simplify 75100π​+75200πn​:34π​+38πn​
75100π​+75200πn​
Cancel 75100π​:34π​
75100π​
Cancel the common factor: 25=34π​
=34π​+75200πn​
Cancel 75200πn​:38πn​
75200πn​
Cancel the common factor: 25=38πn​
=34π​+38πn​
x=34π​+38πn​
x=34π​+38πn​
x=34π​+38πn​
x=38πn​,x=34π​+38πn​
Combine all the solutionsx=52π​+58πn​,x=56π​+58πn​,x=38πn​,x=34π​+38πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(2x+15)= 1/2sin^2(x)-2cos^4(x)=02cos^2(θ)-1=sec(θ)1/(sin(x))-sin(x)=sin(x)4cos^2(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024