Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos^2(θ)-1=sec(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos2(θ)−1=sec(θ)

Solution

θ=2πn
+1
Degrees
θ=0∘+360∘n
Solution steps
2cos2(θ)−1=sec(θ)
Subtract sec(θ) from both sides2cos2(θ)−1−sec(θ)=0
Rewrite using trig identities
−1−sec(θ)+2cos2(θ)
Use the basic trigonometric identity: cos(x)=sec(x)1​=−1−sec(θ)+2(sec(θ)1​)2
2(sec(θ)1​)2=sec2(θ)2​
2(sec(θ)1​)2
(sec(θ)1​)2=sec2(θ)1​
(sec(θ)1​)2
Apply exponent rule: (ba​)c=bcac​=sec2(θ)12​
Apply rule 1a=112=1=sec2(θ)1​
=2⋅sec2(θ)1​
Multiply fractions: a⋅cb​=ca⋅b​=sec2(θ)1⋅2​
Multiply the numbers: 1⋅2=2=sec2(θ)2​
=−1−sec(θ)+sec2(θ)2​
−1+sec2(θ)2​−sec(θ)=0
Solve by substitution
−1+sec2(θ)2​−sec(θ)=0
Let: sec(θ)=u−1+u22​−u=0
−1+u22​−u=0:u=1,u=−1+i,u=−1−i
−1+u22​−u=0
Multiply both sides by u2
−1+u22​−u=0
Multiply both sides by u2−1⋅u2+u22​u2−uu2=0⋅u2
Simplify
−1⋅u2+u22​u2−uu2=0⋅u2
Simplify −1⋅u2:−u2
−1⋅u2
Multiply: 1⋅u2=u2=−u2
Simplify u22​u2:2
u22​u2
Multiply fractions: a⋅cb​=ca⋅b​=u22u2​
Cancel the common factor: u2=2
Simplify −uu2:−u3
−uu2
Apply exponent rule: ab⋅ac=ab+cuu2=u1+2=−u1+2
Add the numbers: 1+2=3=−u3
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
−u2+2−u3=0
−u2+2−u3=0
−u2+2−u3=0
Solve −u2+2−u3=0:u=1,u=−1+i,u=−1−i
−u2+2−u3=0
Write in the standard form an​xn+…+a1​x+a0​=0−u3−u2+2=0
Factor −u3−u2+2:−(u−1)(u2+2u+2)
−u3−u2+2
Factor out common term −1=−(u3+u2−2)
Factor u3+u2−2:(u−1)(u2+2u+2)
u3+u2−2
Use the rational root theorem
a0​=2,an​=1
The dividers of a0​:1,2,The dividers of an​:1
Therefore, check the following rational numbers:±11,2​
11​ is a root of the expression, so factor out u−1
=(u−1)u−1u3+u2−2​
u−1u3+u2−2​=u2+2u+2
u−1u3+u2−2​
Divide u−1u3+u2−2​:u−1u3+u2−2​=u2+u−12u2−2​
Divide the leading coefficients of the numerator u3+u2−2
and the divisor u−1:uu3​=u2
Quotient=u2
Multiply u−1 by u2:u3−u2Subtract u3−u2 from u3+u2−2 to get new remainderRemainder=2u2−2
Thereforeu−1u3+u2−2​=u2+u−12u2−2​
=u2+u−12u2−2​
Divide u−12u2−2​:u−12u2−2​=2u+u−12u−2​
Divide the leading coefficients of the numerator 2u2−2
and the divisor u−1:u2u2​=2u
Quotient=2u
Multiply u−1 by 2u:2u2−2uSubtract 2u2−2u from 2u2−2 to get new remainderRemainder=2u−2
Thereforeu−12u2−2​=2u+u−12u−2​
=u2+2u+u−12u−2​
Divide u−12u−2​:u−12u−2​=2
Divide the leading coefficients of the numerator 2u−2
and the divisor u−1:u2u​=2
Quotient=2
Multiply u−1 by 2:2u−2Subtract 2u−2 from 2u−2 to get new remainderRemainder=0
Thereforeu−12u−2​=2
=u2+2u+2
=u2+2u+2
=(u−1)(u2+2u+2)
=−(u−1)(u2+2u+2)
−(u−1)(u2+2u+2)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−1=0oru2+2u+2=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve u2+2u+2=0:u=−1+i,u=−1−i
u2+2u+2=0
Solve with the quadratic formula
u2+2u+2=0
Quadratic Equation Formula:
For a=1,b=2,c=2u1,2​=2⋅1−2±22−4⋅1⋅2​​
u1,2​=2⋅1−2±22−4⋅1⋅2​​
Simplify 22−4⋅1⋅2​:2i
22−4⋅1⋅2​
Multiply the numbers: 4⋅1⋅2=8=22−8​
Apply imaginary number rule: −a​=ia​=i8−22​
−22+8​=2
−22+8​
22=4=−4+8​
Add/Subtract the numbers: −4+8=4=4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=2i
u1,2​=2⋅1−2±2i​
Separate the solutionsu1​=2⋅1−2+2i​,u2​=2⋅1−2−2i​
u=2⋅1−2+2i​:−1+i
2⋅1−2+2i​
Multiply the numbers: 2⋅1=2=2−2+2i​
Factor −2+2i:2(−1+i)
−2+2i
Rewrite as=−2⋅1+2i
Factor out common term 2=2(−1+i)
=22(−1+i)​
Divide the numbers: 22​=1=−1+i
u=2⋅1−2−2i​:−1−i
2⋅1−2−2i​
Multiply the numbers: 2⋅1=2=2−2−2i​
Factor −2−2i:−2(1+i)
−2−2i
Rewrite as=−2⋅1−2i
Factor out common term 2=−2(1+i)
=−22(1+i)​
Divide the numbers: 22​=1=−(1+i)
Negate −(1+i)=−1−i=−1−i
The solutions to the quadratic equation are:u=−1+i,u=−1−i
The solutions areu=1,u=−1+i,u=−1−i
u=1,u=−1+i,u=−1−i
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −1+u22​−u and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−1+i,u=−1−i
Substitute back u=sec(θ)sec(θ)=1,sec(θ)=−1+i,sec(θ)=−1−i
sec(θ)=1,sec(θ)=−1+i,sec(θ)=−1−i
sec(θ)=1:θ=2πn
sec(θ)=1
General solutions for sec(θ)=1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
θ=0+2πn
θ=0+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn
sec(θ)=−1+i:No Solution
sec(θ)=−1+i
NoSolution
sec(θ)=−1−i:No Solution
sec(θ)=−1−i
NoSolution
Combine all the solutionsθ=2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1/(sin(x))-sin(x)=sin(x)4cos^2(x)=0sin(2x)=(2*10*1500000)/(11000000)2/(tan(x))=3-tan(x)tan(x)=0.158

Frequently Asked Questions (FAQ)

  • What is the general solution for 2cos^2(θ)-1=sec(θ) ?

    The general solution for 2cos^2(θ)-1=sec(θ) is θ=2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024