Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/1+cot^2(x)=sin^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

11​+cot2(x)=sin2(x)

Solution

x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n
Solution steps
11​+cot2(x)=sin2(x)
Subtract sin2(x) from both sides1+cot2(x)−sin2(x)=0
Rewrite using trig identities
1+cot2(x)−sin2(x)
Use the Pythagorean identity: 1+cot2(x)=csc2(x)=−sin2(x)+csc2(x)
csc2(x)−sin2(x)=0
Factor csc2(x)−sin2(x):(csc(x)+sin(x))(csc(x)−sin(x))
csc2(x)−sin2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)csc2(x)−sin2(x)=(csc(x)+sin(x))(csc(x)−sin(x))=(csc(x)+sin(x))(csc(x)−sin(x))
(csc(x)+sin(x))(csc(x)−sin(x))=0
Solving each part separatelycsc(x)+sin(x)=0orcsc(x)−sin(x)=0
csc(x)+sin(x)=0:No Solution
csc(x)+sin(x)=0
Rewrite using trig identities
csc(x)+sin(x)
Use the basic trigonometric identity: sin(x)=csc(x)1​=csc(x)+csc(x)1​
csc(x)+csc(x)1​=0
Solve by substitution
csc(x)+csc(x)1​=0
Let: csc(x)=uu+u1​=0
u+u1​=0:u=i,u=−i
u+u1​=0
Multiply both sides by u
u+u1​=0
Multiply both sides by uuu+u1​u=0⋅u
Simplify
uu+u1​u=0⋅u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify u1​u:1
u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅u​
Cancel the common factor: u=1
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
u2+1=0
u2+1=0
u2+1=0
Solve u2+1=0:u=i,u=−i
u2+1=0
Move 1to the right side
u2+1=0
Subtract 1 from both sidesu2+1−1=0−1
Simplifyu2=−1
u2=−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−1​,u=−−1​
Simplify −1​:i
−1​
Apply imaginary number rule: −1​=i=i
Simplify −−1​:−i
−−1​
Apply imaginary number rule: −1​=i=−i
u=i,u=−i
u=i,u=−i
Substitute back u=csc(x)csc(x)=i,csc(x)=−i
csc(x)=i,csc(x)=−i
csc(x)=i:No Solution
csc(x)=i
NoSolution
csc(x)=−i:No Solution
csc(x)=−i
NoSolution
Combine all the solutionsNoSolution
csc(x)−sin(x)=0:x=2π​+2πn,x=23π​+2πn
csc(x)−sin(x)=0
Rewrite using trig identities
csc(x)−sin(x)
Use the basic trigonometric identity: sin(x)=csc(x)1​=csc(x)−csc(x)1​
csc(x)−csc(x)1​=0
Solve by substitution
csc(x)−csc(x)1​=0
Let: csc(x)=uu−u1​=0
u−u1​=0:u=1,u=−1
u−u1​=0
Multiply both sides by u
u−u1​=0
Multiply both sides by uuu−u1​u=0⋅u
Simplify
uu−u1​u=0⋅u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify −u1​u:−1
−u1​u
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u​
Cancel the common factor: u=−1
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
u2−1=0
u2−1=0
u2−1=0
Solve u2−1=0:u=1,u=−1
u2−1=0
Move 1to the right side
u2−1=0
Add 1 to both sidesu2−1+1=0+1
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
u=1,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u−u1​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−1
Substitute back u=csc(x)csc(x)=1,csc(x)=−1
csc(x)=1,csc(x)=−1
csc(x)=1:x=2π​+2πn
csc(x)=1
General solutions for csc(x)=1
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=2π​+2πn
x=2π​+2πn
csc(x)=−1:x=23π​+2πn
csc(x)=−1
General solutions for csc(x)=−1
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=23π​+2πn
x=23π​+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,2cos(x)=2cos(3x)sin(x)=1-2sin^2(x)2sin^2(t)-cos(t)-1=04cos^2(θ)=1,0<= θ<2picos(x/2+pi/3)=(sqrt(2))/2

Frequently Asked Questions (FAQ)

  • What is the general solution for 1/1+cot^2(x)=sin^2(x) ?

    The general solution for 1/1+cot^2(x)=sin^2(x) is x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024