Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x/2+pi/3)=(sqrt(2))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2x​+3π​)=22​​

Solution

x=4πn−6π​,x=4πn+617π​
+1
Degrees
x=−30∘+720∘n,x=510∘+720∘n
Solution steps
cos(2x​+3π​)=22​​
General solutions for cos(2x​+3π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x​+3π​=4π​+2πn,2x​+3π​=47π​+2πn
2x​+3π​=4π​+2πn,2x​+3π​=47π​+2πn
Solve 2x​+3π​=4π​+2πn:x=4πn−6π​
2x​+3π​=4π​+2πn
Move 3π​to the right side
2x​+3π​=4π​+2πn
Subtract 3π​ from both sides2x​+3π​−3π​=4π​+2πn−3π​
Simplify
2x​+3π​−3π​=4π​+2πn−3π​
Simplify 2x​+3π​−3π​:2x​
2x​+3π​−3π​
Add similar elements: 3π​−3π​=0
=2x​
Simplify 4π​+2πn−3π​:2πn−12π​
4π​+2πn−3π​
Group like terms=2πn+4π​−3π​
Least Common Multiplier of 4,3:12
4,3
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 4 or 3=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 3π​:multiply the denominator and numerator by 43π​=3⋅4π4​=12π4​
=12π3​−12π4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π3−π4​
Add similar elements: 3π−4π=−π=12−π​
Apply the fraction rule: b−a​=−ba​=2πn−12π​
2x​=2πn−12π​
2x​=2πn−12π​
2x​=2πn−12π​
Multiply both sides by 2
2x​=2πn−12π​
Multiply both sides by 222x​=2⋅2πn−2⋅12π​
Simplify
22x​=2⋅2πn−2⋅12π​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2πn−2⋅12π​:4πn−6π​
2⋅2πn−2⋅12π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
2⋅12π​=6π​
2⋅12π​
Multiply fractions: a⋅cb​=ca⋅b​=12π2​
Cancel the common factor: 2=6π​
=4πn−6π​
x=4πn−6π​
x=4πn−6π​
x=4πn−6π​
Solve 2x​+3π​=47π​+2πn:x=4πn+617π​
2x​+3π​=47π​+2πn
Move 3π​to the right side
2x​+3π​=47π​+2πn
Subtract 3π​ from both sides2x​+3π​−3π​=47π​+2πn−3π​
Simplify
2x​+3π​−3π​=47π​+2πn−3π​
Simplify 2x​+3π​−3π​:2x​
2x​+3π​−3π​
Add similar elements: 3π​−3π​=0
=2x​
Simplify 47π​+2πn−3π​:2πn+1217π​
47π​+2πn−3π​
Group like terms=2πn−3π​+47π​
Least Common Multiplier of 3,4:12
3,4
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 3 or 4=3⋅2⋅2
Multiply the numbers: 3⋅2⋅2=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 3π​:multiply the denominator and numerator by 43π​=3⋅4π4​=12π4​
For 47π​:multiply the denominator and numerator by 347π​=4⋅37π3​=1221π​
=−12π4​+1221π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π4+21π​
Add similar elements: −4π+21π=17π=2πn+1217π​
2x​=2πn+1217π​
2x​=2πn+1217π​
2x​=2πn+1217π​
Multiply both sides by 2
2x​=2πn+1217π​
Multiply both sides by 222x​=2⋅2πn+2⋅1217π​
Simplify
22x​=2⋅2πn+2⋅1217π​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2πn+2⋅1217π​:4πn+617π​
2⋅2πn+2⋅1217π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
2⋅1217π​=617π​
2⋅1217π​
Multiply fractions: a⋅cb​=ca⋅b​=1217π2​
Multiply the numbers: 17⋅2=34=1234π​
Cancel the common factor: 2=617π​
=4πn+617π​
x=4πn+617π​
x=4πn+617π​
x=4πn+617π​
x=4πn−6π​,x=4πn+617π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)=8.22sin(x)=4sin(x)+1-1-cos(θ)=-3cos(θ)3*cos(θ)=2-sin(θ)0.06=0.1*cos(4x-1.57)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x/2+pi/3)=(sqrt(2))/2 ?

    The general solution for cos(x/2+pi/3)=(sqrt(2))/2 is x=4pin-pi/6 ,x=4pin+(17pi)/6
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024