Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove cos(a+270)=sin(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove

Solution

True
Solution steps
cos(a+270∘)=sin(a)
Manipulating left sidecos(a+270∘)
Rewrite using trig identities
cos(a+270∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(a)cos(270∘)−sin(a)sin(270∘)
Simplify cos(a)cos(270∘)−sin(a)sin(270∘):sin(a)
cos(a)cos(270∘)−sin(a)sin(270∘)
cos(a)cos(270∘)=0
cos(a)cos(270∘)
cos(270∘)=0
cos(270∘)
Rewrite using trig identities:cos(180∘)cos(90∘)−sin(180∘)sin(90∘)
cos(270∘)
Write cos(270∘)as cos(180∘+90∘)=cos(180∘+90∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(180∘)cos(90∘)−sin(180∘)sin(90∘)
=cos(180∘)cos(90∘)−sin(180∘)sin(90∘)
Use the following trivial identity:cos(180∘)=(−1)
cos(180∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(90∘)=0
cos(90∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Use the following trivial identity:sin(180∘)=0
sin(180∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(90∘)=1
sin(90∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=(−1)⋅0−0⋅1
Simplify=0
=0⋅cos(a)
Apply rule 0⋅a=0=0
sin(a)sin(270∘)=−sin(a)
sin(a)sin(270∘)
sin(270∘)=−1
sin(270∘)
Rewrite using trig identities:sin(180∘)cos(90∘)+cos(180∘)sin(90∘)
sin(270∘)
Write sin(270∘)as sin(180∘+90∘)=sin(180∘+90∘)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(180∘)cos(90∘)+cos(180∘)sin(90∘)
=sin(180∘)cos(90∘)+cos(180∘)sin(90∘)
Use the following trivial identity:sin(180∘)=0
sin(180∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:cos(90∘)=0
cos(90∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Use the following trivial identity:cos(180∘)=(−1)
cos(180∘)
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:sin(90∘)=1
sin(90∘)
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=0⋅0+(−1)⋅1
Simplify=−1
=(−1)sin(a)
Refine=−sin(a)
=0−(−sin(a))
Refine=sin(a)
=sin(a)
=sin(a)
We showed that the two sides could take the same form⇒True

Popular Examples

1+sin(θ)=2-sin(θ)-4cos^2(θ)+cos(θ)=9cos(θ)+33+4cot(x)=5csc(x)(tan(x)-1)(sec(x)+1)=0tan(θ)= 9/10

Frequently Asked Questions (FAQ)

  • Is cos(a+270)=sin(a) ?

    The answer to whether cos(a+270)=sin(a) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024