Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(x)+cos(x))/(sin(x))=(1+1)/(tan(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)sin(x)+cos(x)​=tan(x)1+1​

Solution

x=4π​+πn
+1
Degrees
x=45∘+180∘n
Solution steps
sin(x)sin(x)+cos(x)​=tan(x)1+1​
Subtract tan(x)1+1​ from both sidessin(x)sin(x)+cos(x)​−tan(x)2​=0
Simplify sin(x)sin(x)+cos(x)​−tan(x)2​:sin(x)tan(x)tan(x)(sin(x)+cos(x))−2sin(x)​
sin(x)sin(x)+cos(x)​−tan(x)2​
Least Common Multiplier of sin(x),tan(x):sin(x)tan(x)
sin(x),tan(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(x) or tan(x)=sin(x)tan(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(x)tan(x)
For sin(x)sin(x)+cos(x)​:multiply the denominator and numerator by tan(x)sin(x)sin(x)+cos(x)​=sin(x)tan(x)(sin(x)+cos(x))tan(x)​
For tan(x)2​:multiply the denominator and numerator by sin(x)tan(x)2​=tan(x)sin(x)2sin(x)​
=sin(x)tan(x)(sin(x)+cos(x))tan(x)​−tan(x)sin(x)2sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)tan(x)(sin(x)+cos(x))tan(x)−2sin(x)​
sin(x)tan(x)tan(x)(sin(x)+cos(x))−2sin(x)​=0
g(x)f(x)​=0⇒f(x)=0tan(x)(sin(x)+cos(x))−2sin(x)=0
Express with sin, cos
(cos(x)+sin(x))tan(x)−2sin(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=(cos(x)+sin(x))cos(x)sin(x)​−2sin(x)
Simplify (cos(x)+sin(x))cos(x)sin(x)​−2sin(x):cos(x)−sin(x)cos(x)+sin2(x)​
(cos(x)+sin(x))cos(x)sin(x)​−2sin(x)
Multiply (cos(x)+sin(x))cos(x)sin(x)​:cos(x)sin(x)(cos(x)+sin(x))​
(cos(x)+sin(x))cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)(cos(x)+sin(x))​
=cos(x)sin(x)(cos(x)+sin(x))​−2sin(x)
Convert element to fraction: 2sin(x)=cos(x)2sin(x)cos(x)​=cos(x)sin(x)(cos(x)+sin(x))​−cos(x)2sin(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)(cos(x)+sin(x))−2sin(x)cos(x)​
Expand sin(x)(cos(x)+sin(x))−2sin(x)cos(x):−sin(x)cos(x)+sin2(x)
sin(x)(cos(x)+sin(x))−2sin(x)cos(x)
Expand sin(x)(cos(x)+sin(x)):sin(x)cos(x)+sin2(x)
sin(x)(cos(x)+sin(x))
Apply the distributive law: a(b+c)=ab+aca=sin(x),b=cos(x),c=sin(x)=sin(x)cos(x)+sin(x)sin(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=sin(x)cos(x)+sin2(x)
=sin(x)cos(x)+sin2(x)−2sin(x)cos(x)
Add similar elements: sin(x)cos(x)−2sin(x)cos(x)=−sin(x)cos(x)=−sin(x)cos(x)+sin2(x)
=cos(x)−sin(x)cos(x)+sin2(x)​
=cos(x)−sin(x)cos(x)+sin2(x)​
cos(x)sin2(x)−cos(x)sin(x)​=0
g(x)f(x)​=0⇒f(x)=0sin2(x)−cos(x)sin(x)=0
Factor sin2(x)−cos(x)sin(x):sin(x)(sin(x)−cos(x))
sin2(x)−cos(x)sin(x)
Apply exponent rule: ab+c=abacsin2(x)=sin(x)sin(x)=sin(x)sin(x)−sin(x)cos(x)
Factor out common term sin(x)=sin(x)(sin(x)−cos(x))
sin(x)(sin(x)−cos(x))=0
Solving each part separatelysin(x)=0orsin(x)−cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)−cos(x)=0:x=4π​+πn
sin(x)−cos(x)=0
Rewrite using trig identities
sin(x)−cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−1=0
tan(x)−1=0
Move 1to the right side
tan(x)−1=0
Add 1 to both sidestan(x)−1+1=0+1
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
Combine all the solutionsx=2πn,x=π+2πn,x=4π​+πn
Since the equation is undefined for:2πn,π+2πnx=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3tan(x+45)=sqrt(3)0=sin(pix)sec(θ)csc(θ)=1prove cos(a+270)=sin(a)1+sin(θ)=2-sin(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for (sin(x)+cos(x))/(sin(x))=(1+1)/(tan(x)) ?

    The general solution for (sin(x)+cos(x))/(sin(x))=(1+1)/(tan(x)) is x= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024