Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(x)-cos(2x)=-1/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(x)−cos(2x)=−41​

Solution

x=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n,x=210∘+360∘n,x=330∘+360∘n
Solution steps
sin2(x)−cos(2x)=−41​
Subtract −41​ from both sidessin2(x)−cos(2x)+41​=0
Simplify sin2(x)−cos(2x)+41​:44sin2(x)−4cos(2x)+1​
sin2(x)−cos(2x)+41​
Convert element to fraction: sin2(x)=4sin2(x)4​,cos(2x)=4cos(2x)4​=4sin2(x)⋅4​−4cos(2x)⋅4​+41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4sin2(x)⋅4−cos(2x)⋅4+1​
44sin2(x)−4cos(2x)+1​=0
g(x)f(x)​=0⇒f(x)=04sin2(x)−4cos(2x)+1=0
Rewrite using trig identities
1−4cos(2x)+4sin2(x)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=1−4(1−2sin2(x))+4sin2(x)
Simplify 1−4(1−2sin2(x))+4sin2(x):12sin2(x)−3
1−4(1−2sin2(x))+4sin2(x)
Expand −4(1−2sin2(x)):−4+8sin2(x)
−4(1−2sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−4,b=1,c=2sin2(x)=−4⋅1−(−4)⋅2sin2(x)
Apply minus-plus rules−(−a)=a=−4⋅1+4⋅2sin2(x)
Simplify −4⋅1+4⋅2sin2(x):−4+8sin2(x)
−4⋅1+4⋅2sin2(x)
Multiply the numbers: 4⋅1=4=−4+4⋅2sin2(x)
Multiply the numbers: 4⋅2=8=−4+8sin2(x)
=−4+8sin2(x)
=1−4+8sin2(x)+4sin2(x)
Simplify 1−4+8sin2(x)+4sin2(x):12sin2(x)−3
1−4+8sin2(x)+4sin2(x)
Add similar elements: 8sin2(x)+4sin2(x)=12sin2(x)=1−4+12sin2(x)
Subtract the numbers: 1−4=−3=12sin2(x)−3
=12sin2(x)−3
=12sin2(x)−3
−3+12sin2(x)=0
Solve by substitution
−3+12sin2(x)=0
Let: sin(x)=u−3+12u2=0
−3+12u2=0:u=21​,u=−21​
−3+12u2=0
Move 3to the right side
−3+12u2=0
Add 3 to both sides−3+12u2+3=0+3
Simplify12u2=3
12u2=3
Divide both sides by 12
12u2=3
Divide both sides by 121212u2​=123​
Simplifyu2=41​
u2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
−41​​=−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
u=21​,u=−21​
Substitute back u=sin(x)sin(x)=21​,sin(x)=−21​
sin(x)=21​,sin(x)=−21​
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2=cos^2(x)+sin^2(x)-5pisin((pi(t))/2)=7.0719.8*sin(x)-19.6*cos(x)=4.7cos(x)=-sqrt(3)sin(x)sin(α)= 3/5 ,0<a< pi/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024