Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2=cos^2(x)+sin^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2=cos2(x)+sin2(x)

Solution

NoSolutionforx∈R
Solution steps
2=cos2(x)+sin2(x)
Subtract sin2(x) from both sidescos2(x)=2−sin2(x)
Square both sides(cos2(x))2=(2−sin2(x))2
Subtract (2−sin2(x))2 from both sidescos4(x)−4+4sin2(x)−sin4(x)=0
Apply exponent rule: ab=a2ab−2−4−sin4(x)+4sin2(x)+cos2(x)cos2(x)=0
Rewrite using trig identities
−4−sin4(x)+4sin2(x)+cos2(x)cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−4−sin4(x)+4sin2(x)+(1−sin2(x))(1−sin2(x))
Simplify −4−sin4(x)+4sin2(x)+(1−sin2(x))(1−sin2(x)):2sin2(x)−3
−4−sin4(x)+4sin2(x)+(1−sin2(x))(1−sin2(x))
(1−sin2(x))(1−sin2(x))=(1−sin2(x))2
(1−sin2(x))(1−sin2(x))
Apply exponent rule: ab⋅ac=ab+c(1−sin2(x))(1−sin2(x))=(1−sin2(x))1+1=(1−sin2(x))1+1
Add the numbers: 1+1=2=(1−sin2(x))2
=−4−sin4(x)+4sin2(x)+(−sin2(x)+1)2
(1−sin2(x))2:1−2sin2(x)+sin4(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=sin2(x)
=12−2⋅1⋅sin2(x)+(sin2(x))2
Simplify 12−2⋅1⋅sin2(x)+(sin2(x))2:1−2sin2(x)+sin4(x)
12−2⋅1⋅sin2(x)+(sin2(x))2
Apply rule 1a=112=1=1−2⋅1⋅sin2(x)+(sin2(x))2
2⋅1⋅sin2(x)=2sin2(x)
2⋅1⋅sin2(x)
Multiply the numbers: 2⋅1=2=2sin2(x)
(sin2(x))2=sin4(x)
(sin2(x))2
Apply exponent rule: (ab)c=abc=sin2⋅2(x)
Multiply the numbers: 2⋅2=4=sin4(x)
=1−2sin2(x)+sin4(x)
=1−2sin2(x)+sin4(x)
=−4−sin4(x)+4sin2(x)+1−2sin2(x)+sin4(x)
Simplify −4−sin4(x)+4sin2(x)+1−2sin2(x)+sin4(x):2sin2(x)−3
−4−sin4(x)+4sin2(x)+1−2sin2(x)+sin4(x)
Group like terms=−sin4(x)+4sin2(x)−2sin2(x)+sin4(x)−4+1
Add similar elements: 4sin2(x)−2sin2(x)=2sin2(x)=−sin4(x)+2sin2(x)+sin4(x)−4+1
Add similar elements: −sin4(x)+sin4(x)=0=2sin2(x)−4+1
Add/Subtract the numbers: −4+1=−3=2sin2(x)−3
=2sin2(x)−3
=2sin2(x)−3
−3+2sin2(x)=0
Solve by substitution
−3+2sin2(x)=0
Let: sin(x)=u−3+2u2=0
−3+2u2=0:u=23​​,u=−23​​
−3+2u2=0
Move 3to the right side
−3+2u2=0
Add 3 to both sides−3+2u2+3=0+3
Simplify2u2=3
2u2=3
Divide both sides by 2
2u2=3
Divide both sides by 222u2​=23​
Simplifyu2=23​
u2=23​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=23​​,u=−23​​
Substitute back u=sin(x)sin(x)=23​​,sin(x)=−23​​
sin(x)=23​​,sin(x)=−23​​
sin(x)=23​​:No Solution
sin(x)=23​​
−1≤sin(x)≤1NoSolution
sin(x)=−23​​:No Solution
sin(x)=−23​​
−1≤sin(x)≤1NoSolution
Combine all the solutionsNoSolution
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into cos2(x)+sin2(x)=2
Remove the ones that don't agree with the equation.
NoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-5pisin((pi(t))/2)=7.0719.8*sin(x)-19.6*cos(x)=4.7cos(x)=-sqrt(3)sin(x)sin(α)= 3/5 ,0<a< pi/2-(15(0.5cos(x)-sin(x)))/((0.5sin(x)+cos(x))^2)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 2=cos^2(x)+sin^2(x) ?

    The general solution for 2=cos^2(x)+sin^2(x) is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024