Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(2x)+cos(2x))^2=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(sin(2x)+cos(2x))2=2

Solution

x=πn+85π​,x=πn+8π​
+1
Degrees
x=112.5∘+180∘n,x=22.5∘+180∘n
Solution steps
(sin(2x)+cos(2x))2=2
Subtract 2 from both sides(sin(2x)+cos(2x))2−2=0
Factor (sin(2x)+cos(2x))2−2:(sin(2x)+cos(2x)+2​)(sin(2x)+cos(2x)−2​)
(sin(2x)+cos(2x))2−2
Apply radical rule: a=(a​)22=(2​)2=(sin(2x)+cos(2x))2−(2​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(sin(2x)+cos(2x))2−(2​)2=((sin(2x)+cos(2x))+2​)((sin(2x)+cos(2x))−2​)=((sin(2x)+cos(2x))+2​)((sin(2x)+cos(2x))−2​)
Refine=(sin(2x)+cos(2x)+2​)(sin(2x)+cos(2x)−2​)
(sin(2x)+cos(2x)+2​)(sin(2x)+cos(2x)−2​)=0
Solving each part separatelysin(2x)+cos(2x)+2​=0orsin(2x)+cos(2x)−2​=0
sin(2x)+cos(2x)+2​=0:x=πn+85π​
sin(2x)+cos(2x)+2​=0
Rewrite using trig identities
sin(2x)+cos(2x)+2​
sin(2x)+cos(2x)=2​sin(2x+4π​)
sin(2x)+cos(2x)
Rewrite as=2​(2​1​sin(2x)+2​1​cos(2x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(2x)+sin(4π​)cos(2x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(2x+4π​)
=2​+2​sin(2x+4π​)
2​+2​sin(2x+4π​)=0
Move 2​to the right side
2​+2​sin(2x+4π​)=0
Subtract 2​ from both sides2​+2​sin(2x+4π​)−2​=0−2​
Simplify2​sin(2x+4π​)=−2​
2​sin(2x+4π​)=−2​
Divide both sides by 2​
2​sin(2x+4π​)=−2​
Divide both sides by 2​2​2​sin(2x+4π​)​=2​−2​​
Simplifysin(2x+4π​)=−1
sin(2x+4π​)=−1
General solutions for sin(2x+4π​)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x+4π​=23π​+2πn
2x+4π​=23π​+2πn
Solve 2x+4π​=23π​+2πn:x=πn+85π​
2x+4π​=23π​+2πn
Move 4π​to the right side
2x+4π​=23π​+2πn
Subtract 4π​ from both sides2x+4π​−4π​=23π​+2πn−4π​
Simplify
2x+4π​−4π​=23π​+2πn−4π​
Simplify 2x+4π​−4π​:2x
2x+4π​−4π​
Add similar elements: 4π​−4π​=0
=2x
Simplify 23π​+2πn−4π​:2πn+45π​
23π​+2πn−4π​
Group like terms=2πn−4π​+23π​
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 23π​:multiply the denominator and numerator by 223π​=2⋅23π2​=46π​
=−4π​+46π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−π+6π​
Add similar elements: −π+6π=5π=2πn+45π​
2x=2πn+45π​
2x=2πn+45π​
2x=2πn+45π​
Divide both sides by 2
2x=2πn+45π​
Divide both sides by 222x​=22πn​+245π​​
Simplify
22x​=22πn​+245π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22πn​+245π​​:πn+85π​
22πn​+245π​​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
245π​​=85π​
245π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅25π​
Multiply the numbers: 4⋅2=8=85π​
=πn+85π​
x=πn+85π​
x=πn+85π​
x=πn+85π​
x=πn+85π​
sin(2x)+cos(2x)−2​=0:x=πn+8π​
sin(2x)+cos(2x)−2​=0
Rewrite using trig identities
sin(2x)+cos(2x)−2​
sin(2x)+cos(2x)=2​sin(2x+4π​)
sin(2x)+cos(2x)
Rewrite as=2​(2​1​sin(2x)+2​1​cos(2x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(2x)+sin(4π​)cos(2x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(2x+4π​)
=−2​+2​sin(2x+4π​)
−2​+2​sin(2x+4π​)=0
Move 2​to the right side
−2​+2​sin(2x+4π​)=0
Add 2​ to both sides−2​+2​sin(2x+4π​)+2​=0+2​
Simplify2​sin(2x+4π​)=2​
2​sin(2x+4π​)=2​
Divide both sides by 2​
2​sin(2x+4π​)=2​
Divide both sides by 2​2​2​sin(2x+4π​)​=2​2​​
Simplifysin(2x+4π​)=1
sin(2x+4π​)=1
General solutions for sin(2x+4π​)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x+4π​=2π​+2πn
2x+4π​=2π​+2πn
Solve 2x+4π​=2π​+2πn:x=πn+8π​
2x+4π​=2π​+2πn
Move 4π​to the right side
2x+4π​=2π​+2πn
Subtract 4π​ from both sides2x+4π​−4π​=2π​+2πn−4π​
Simplify
2x+4π​−4π​=2π​+2πn−4π​
Simplify 2x+4π​−4π​:2x
2x+4π​−4π​
Add similar elements: 4π​−4π​=0
=2x
Simplify 2π​+2πn−4π​:2πn+4π​
2π​+2πn−4π​
Group like terms=2πn+2π​−4π​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 2π​:multiply the denominator and numerator by 22π​=2⋅2π2​=4π2​
=4π2​−4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π2−π​
Add similar elements: 2π−π=π=2πn+4π​
2x=2πn+4π​
2x=2πn+4π​
2x=2πn+4π​
Divide both sides by 2
2x=2πn+4π​
Divide both sides by 222x​=22πn​+24π​​
Simplify
22x​=22πn​+24π​​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22πn​+24π​​:πn+8π​
22πn​+24π​​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
24π​​=8π​
24π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅2π​
Multiply the numbers: 4⋅2=8=8π​
=πn+8π​
x=πn+8π​
x=πn+8π​
x=πn+8π​
x=πn+8π​
Combine all the solutionsx=πn+85π​,x=πn+8π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1.5=6sin(x)(2sin(x)-1)/(3*cos(x))=0tan(θ)= 34400/2542sin(x)=-1,-pi<= x<= picot(-pi/5)-sec(x)=1.5

Frequently Asked Questions (FAQ)

  • What is the general solution for (sin(2x)+cos(2x))^2=2 ?

    The general solution for (sin(2x)+cos(2x))^2=2 is x=pin+(5pi)/8 ,x=pin+pi/8
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024