Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,4cos^3(x)=3cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=2π​+2πn,x=23π​+2πn,x=65π​+2πn,x=67π​+2πn,x=6π​+2πn,x=611π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=150∘+360∘n,x=210∘+360∘n,x=30∘+360∘n,x=330∘+360∘n
Solution steps
4cos3(x)=3cos(x)
Solve by substitution
4cos3(x)=3cos(x)
Let: cos(x)=u4u3=3u
4u3=3u:u=0,u=−23​​,u=23​​
4u3=3u
Move 3uto the left side
4u3=3u
Subtract 3u from both sides4u3−3u=3u−3u
Simplify4u3−3u=0
4u3−3u=0
Factor 4u3−3u:u(2u+3​)(2u−3​)
4u3−3u
Factor out common term u:u(4u2−3)
4u3−3u
Apply exponent rule: ab+c=abacu3=u2u=4u2u−3u
Factor out common term u=u(4u2−3)
=u(4u2−3)
Factor 4u2−3:(2u+3​)(2u−3​)
4u2−3
Rewrite 4u2−3 as (2u)2−(3​)2
4u2−3
Rewrite 4 as 22=22u2−3
Apply radical rule: a=(a​)23=(3​)2=22u2−(3​)2
Apply exponent rule: ambm=(ab)m22u2=(2u)2=(2u)2−(3​)2
=(2u)2−(3​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2u)2−(3​)2=(2u+3​)(2u−3​)=(2u+3​)(2u−3​)
=u(2u+3​)(2u−3​)
u(2u+3​)(2u−3​)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or2u+3​=0or2u−3​=0
Solve 2u+3​=0:u=−23​​
2u+3​=0
Move 3​to the right side
2u+3​=0
Subtract 3​ from both sides2u+3​−3​=0−3​
Simplify2u=−3​
2u=−3​
Divide both sides by 2
2u=−3​
Divide both sides by 222u​=2−3​​
Simplifyu=−23​​
u=−23​​
Solve 2u−3​=0:u=23​​
2u−3​=0
Move 3​to the right side
2u−3​=0
Add 3​ to both sides2u−3​+3​=0+3​
Simplify2u=3​
2u=3​
Divide both sides by 2
2u=3​
Divide both sides by 222u​=23​​
Simplifyu=23​​
u=23​​
The solutions areu=0,u=−23​​,u=23​​
Substitute back u=cos(x)cos(x)=0,cos(x)=−23​​,cos(x)=23​​
cos(x)=0,cos(x)=−23​​,cos(x)=23​​
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−23​​:x=65π​+2πn,x=67π​+2πn
cos(x)=−23​​
General solutions for cos(x)=−23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=65π​+2πn,x=67π​+2πn
x=65π​+2πn,x=67π​+2πn
cos(x)=23​​:x=6π​+2πn,x=611π​+2πn
cos(x)=23​​
General solutions for cos(x)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=6π​+2πn,x=611π​+2πn
x=6π​+2πn,x=611π​+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=65π​+2πn,x=67π​+2πn,x=6π​+2πn,x=611π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(x)=2cos(x)-1sqrt(11)sin(x+37.09)=1cot^2(x)+3csc(x)+3=0cos(2x)+cos(x)-1=0cos(2x)-1=-sin(2x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024