Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x+pi)-sin(x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x+π)−sin(x)−1=0

Solution

x=2πn−2π​+3π​,x=2πn−2π​+35π​
+1
Degrees
x=−30∘+360∘n,x=210∘+360∘n
Solution steps
sin(x+π)−sin(x)−1=0
Rewrite using trig identities
sin(x+π)−sin(x)−1
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=−1+2sin(2x+π−x​)cos(2x+π+x​)
2sin(2x+π−x​)cos(2x+π+x​)=2cos(22x+π​)
2sin(2x+π−x​)cos(2x+π+x​)
x+π−x=π
x+π−x
Group like terms=x−x+π
Add similar elements: x−x=0=π
=2sin(2π​)cos(2x+x+π​)
x+π+x=2x+π
x+π+x
Group like terms=x+x+π
Add similar elements: x+x=2x=2x+π
=2sin(2π​)cos(22x+π​)
Simplify sin(2π​):1
sin(2π​)
Use the following trivial identity:sin(2π​)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=2⋅1⋅cos(22x+π​)
Multiply the numbers: 2⋅1=2=2cos(22x+π​)
=−1+2cos(22x+π​)
−1+2cos(22x+π​)=0
Move 1to the right side
−1+2cos(22x+π​)=0
Add 1 to both sides−1+2cos(22x+π​)+1=0+1
Simplify2cos(22x+π​)=1
2cos(22x+π​)=1
Divide both sides by 2
2cos(22x+π​)=1
Divide both sides by 222cos(22x+π​)​=21​
Simplifycos(22x+π​)=21​
cos(22x+π​)=21​
General solutions for cos(22x+π​)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
22x+π​=3π​+2πn,22x+π​=35π​+2πn
22x+π​=3π​+2πn,22x+π​=35π​+2πn
Solve 22x+π​=3π​+2πn:x=2πn−2π​+3π​
22x+π​=3π​+2πn
Multiply both sides by 2
22x+π​=3π​+2πn
Multiply both sides by 222(2x+π)​=2⋅3π​+2⋅2πn
Simplify
22(2x+π)​=2⋅3π​+2⋅2πn
Simplify 22(2x+π)​:2x+π
22(2x+π)​
Divide the numbers: 22​=1=2x+π
Simplify 2⋅3π​+2⋅2πn:32π​+4πn
2⋅3π​+2⋅2πn
Multiply 2⋅3π​:32π​
2⋅3π​
Multiply fractions: a⋅cb​=ca⋅b​=3π2​
=32π​+2⋅2πn
Multiply the numbers: 2⋅2=4=32π​+4πn
2x+π=32π​+4πn
2x+π=32π​+4πn
2x+π=32π​+4πn
Move πto the right side
2x+π=32π​+4πn
Subtract π from both sides2x+π−π=32π​+4πn−π
Simplify2x=32π​+4πn−π
2x=32π​+4πn−π
Divide both sides by 2
2x=32π​+4πn−π
Divide both sides by 222x​=232π​​+24πn​−2π​
Simplify
22x​=232π​​+24πn​−2π​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 232π​​+24πn​−2π​:2πn−2π​+3π​
232π​​+24πn​−2π​
Group like terms=−2π​+24πn​+232π​​
24πn​=2πn
24πn​
Divide the numbers: 24​=2=2πn
232π​​=3π​
232π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅22π​
Multiply the numbers: 3⋅2=6=62π​
Cancel the common factor: 2=3π​
=−2π​+2πn+3π​
Group like terms=2πn−2π​+3π​
x=2πn−2π​+3π​
x=2πn−2π​+3π​
x=2πn−2π​+3π​
Solve 22x+π​=35π​+2πn:x=2πn−2π​+35π​
22x+π​=35π​+2πn
Multiply both sides by 2
22x+π​=35π​+2πn
Multiply both sides by 222(2x+π)​=2⋅35π​+2⋅2πn
Simplify
22(2x+π)​=2⋅35π​+2⋅2πn
Simplify 22(2x+π)​:2x+π
22(2x+π)​
Divide the numbers: 22​=1=2x+π
Simplify 2⋅35π​+2⋅2πn:310π​+4πn
2⋅35π​+2⋅2πn
2⋅35π​=310π​
2⋅35π​
Multiply fractions: a⋅cb​=ca⋅b​=35π2​
Multiply the numbers: 5⋅2=10=310π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=310π​+4πn
2x+π=310π​+4πn
2x+π=310π​+4πn
2x+π=310π​+4πn
Move πto the right side
2x+π=310π​+4πn
Subtract π from both sides2x+π−π=310π​+4πn−π
Simplify2x=310π​+4πn−π
2x=310π​+4πn−π
Divide both sides by 2
2x=310π​+4πn−π
Divide both sides by 222x​=2310π​​+24πn​−2π​
Simplify
22x​=2310π​​+24πn​−2π​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2310π​​+24πn​−2π​:2πn−2π​+35π​
2310π​​+24πn​−2π​
Group like terms=−2π​+24πn​+2310π​​
24πn​=2πn
24πn​
Divide the numbers: 24​=2=2πn
2310π​​=35π​
2310π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅210π​
Multiply the numbers: 3⋅2=6=610π​
Cancel the common factor: 2=35π​
=−2π​+2πn+35π​
Group like terms=2πn−2π​+35π​
x=2πn−2π​+35π​
x=2πn−2π​+35π​
x=2πn−2π​+35π​
x=2πn−2π​+3π​,x=2πn−2π​+35π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin^2(x)+2sin(x)=0tan(x)=sqrt(3),-pi/3 <= x<= (3pi)/2sin(x)= 5/16sin^2(x)+2cos(x)=0sin(a)=0.36

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x+pi)-sin(x)-1=0 ?

    The general solution for sin(x+pi)-sin(x)-1=0 is x=2pin-pi/2+pi/3 ,x=2pin-pi/2+(5pi)/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024