Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan^2(x))/(sec(x)+1)=tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(x)+1tan2(x)​=tan(x)

Solution

NoSolutionforx∈R
Solution steps
sec(x)+1tan2(x)​=tan(x)
Subtract tan(x) from both sidessec(x)+1tan2(x)​−tan(x)=0
Simplify sec(x)+1tan2(x)​−tan(x):sec(x)+1tan2(x)−tan(x)(sec(x)+1)​
sec(x)+1tan2(x)​−tan(x)
Convert element to fraction: tan(x)=sec(x)+1tan(x)(sec(x)+1)​=sec(x)+1tan2(x)​−sec(x)+1tan(x)(sec(x)+1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sec(x)+1tan2(x)−tan(x)(sec(x)+1)​
sec(x)+1tan2(x)−tan(x)(sec(x)+1)​=0
g(x)f(x)​=0⇒f(x)=0tan2(x)−tan(x)(sec(x)+1)=0
Factor tan2(x)−tan(x)(sec(x)+1):tan(x)(tan(x)−1−sec(x))
tan2(x)−tan(x)(sec(x)+1)
Apply exponent rule: ab+c=abactan2(x)=tan(x)tan(x)=tan(x)tan(x)−tan(x)(1+sec(x))
Factor out common term tan(x)=tan(x)(tan(x)−(1+sec(x)))
Expand tan(x)−(sec(x)+1):tan(x)−1−sec(x)
tan(x)−(1+sec(x))
−(1+sec(x)):−1−sec(x)
−(1+sec(x))
Distribute parentheses=−(1)−(sec(x))
Apply minus-plus rules+(−a)=−a=−1−sec(x)
=tan(x)−1−sec(x)
=tan(x)(tan(x)−sec(x)−1)
tan(x)(tan(x)−1−sec(x))=0
Solving each part separatelytan(x)=0ortan(x)−1−sec(x)=0
tan(x)=0:x=πn
tan(x)=0
General solutions for tan(x)=0
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Solve x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
tan(x)−1−sec(x)=0:x=2πn+π
tan(x)−1−sec(x)=0
Express with sin, cos
−1−sec(x)+tan(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−1−cos(x)1​+tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1−cos(x)1​+cos(x)sin(x)​
Simplify −1−cos(x)1​+cos(x)sin(x)​:cos(x)−cos(x)−1+sin(x)​
−1−cos(x)1​+cos(x)sin(x)​
Combine the fractions −cos(x)1​+cos(x)sin(x)​:cos(x)−1+sin(x)​
Apply rule ca​±cb​=ca±b​=cos(x)−1+sin(x)​
=−1+cos(x)sin(x)−1​
Convert element to fraction: 1=cos(x)1cos(x)​=−cos(x)1⋅cos(x)​+cos(x)−1+sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−1⋅cos(x)−1+sin(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)−cos(x)−1+sin(x)​
=cos(x)−cos(x)−1+sin(x)​
cos(x)−1−cos(x)+sin(x)​=0
g(x)f(x)​=0⇒f(x)=0−1−cos(x)+sin(x)=0
Rewrite using trig identities
−1−cos(x)+sin(x)
sin(x)−cos(x)=2​sin(x−4π​)
sin(x)−cos(x)
Rewrite as=2​(2​1​sin(x)−2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)−sin(4π​)cos(x))
Use the Angle Sum identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=2​sin(x−4π​)
=−1+2​sin(x−4π​)
−1+2​sin(x−4π​)=0
Move 1to the right side
−1+2​sin(x−4π​)=0
Add 1 to both sides−1+2​sin(x−4π​)+1=0+1
Simplify2​sin(x−4π​)=1
2​sin(x−4π​)=1
Divide both sides by 2​
2​sin(x−4π​)=1
Divide both sides by 2​2​2​sin(x−4π​)​=2​1​
Simplify
2​2​sin(x−4π​)​=2​1​
Simplify 2​2​sin(x−4π​)​:sin(x−4π​)
2​2​sin(x−4π​)​
Cancel the common factor: 2​=sin(x−4π​)
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
sin(x−4π​)=22​​
sin(x−4π​)=22​​
sin(x−4π​)=22​​
General solutions for sin(x−4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x−4π​=4π​+2πn,x−4π​=43π​+2πn
x−4π​=4π​+2πn,x−4π​=43π​+2πn
Solve x−4π​=4π​+2πn:x=2π​+2πn
x−4π​=4π​+2πn
Move 4π​to the right side
x−4π​=4π​+2πn
Add 4π​ to both sidesx−4π​+4π​=4π​+2πn+4π​
Simplify
x−4π​+4π​=4π​+2πn+4π​
Simplify x−4π​+4π​:x
x−4π​+4π​
Add similar elements: −4π​+4π​=0
=x
Simplify 4π​+2πn+4π​:2π​+2πn
4π​+2πn+4π​
Group like terms=4π​+4π​+2πn
Combine the fractions 4π​+4π​:2π​
Apply rule ca​±cb​=ca±b​=4π+π​
Add similar elements: π+π=2π=42π​
Cancel the common factor: 2=2π​
=2π​+2πn
x=2π​+2πn
x=2π​+2πn
x=2π​+2πn
Solve x−4π​=43π​+2πn:x=2πn+π
x−4π​=43π​+2πn
Move 4π​to the right side
x−4π​=43π​+2πn
Add 4π​ to both sidesx−4π​+4π​=43π​+2πn+4π​
Simplify
x−4π​+4π​=43π​+2πn+4π​
Simplify x−4π​+4π​:x
x−4π​+4π​
Add similar elements: −4π​+4π​=0
=x
Simplify 43π​+2πn+4π​:2πn+π
43π​+2πn+4π​
Group like terms=2πn+4π​+43π​
Combine the fractions 4π​+43π​:π
Apply rule ca​±cb​=ca±b​=4π+3π​
Add similar elements: π+3π=4π=44π​
Divide the numbers: 44​=1=π
=2πn+π
x=2πn+π
x=2πn+π
x=2πn+π
x=2π​+2πn,x=2πn+π
Since the equation is undefined for:2π​+2πnx=2πn+π
Combine all the solutionsx=πn,x=2πn+π
Since the equation is undefined for:πn,2πn+πNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(x)+cos(x)=1,0<= x<2pisin(β)=-0,8(θ\in βvc)s=sec(β)-tan(β)cos((2x-pi)/(17))=0tan(X)cot(X)-tan(X)+2cot(X)=0sin(x)=-0.3926

Frequently Asked Questions (FAQ)

  • What is the general solution for (tan^2(x))/(sec(x)+1)=tan(x) ?

    The general solution for (tan^2(x))/(sec(x)+1)=tan(x) is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024